《2022-2023学年江苏省镇江市润州区金山实验校中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省镇江市润州区金山实验校中考数学适应性模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,某计算机中有、三个按键,以下是这三个按键的功能(1):将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1(2):将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2(3):将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3
2、若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A0.01B0.1C10D1002下列运算正确的是()ABCa2a3=a5D(2a)3=2a33如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A10B15C20D304下列选项中,能使关于x的一元二次方程ax24x+c=0一定有实数根的是()Aa0Ba=0Cc0Dc=05如图,将ABC 绕点C顺时针旋转,使点B落在AB边上点B处,此时,点A的对应点 A恰好落在 BC 边的延长线上,下列结论错误的是( )ABCB=ACABACB=2BCBCA=BACDBC
3、平分BBA6观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个A6055B6056C6057D60587下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A1 B2 C3 D48若a+b=3,则ab等于( )A2B1C2D19多项式4aa3分解因式的结果是()Aa(4a2) Ba(2a)(2+a) Ca(a2)(a+2) Da(2a)210下列各式中,正确的是()A(xy)=xyB(2)1=CD二、填空题(共7小题,每小题3分
4、,满分21分)11如图,随机闭合开关,中的两个,能让两盏灯泡和同时发光的概率为_12抛物线y=(x+1)2 - 2的顶点坐标是 _ 13计算:(1)()2=_;(2) =_14如图,已知,则_.15如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM若BAD=120,AE=2,则DM=_16欣欣超市为促销,决定对A,B两种商品统一进行打8折销售,打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元,打折后,小敏买50件A商品和40件B商品仅需_元17如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点
5、在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为_.三、解答题(共7小题,满分69分)18(10分)计算:+821(+1)0+2sin6019(5分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为()请直接写出袋子中白球的个数()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)20(8分)如图,在ABC中,AB=AC,以AB为直径的O分别交BC,AC于点D,E,DGAC于点G,交AB的延长线于点F(1)求证:直线FG是O
6、的切线;(2)若AC=10,cosA=,求CG的长21(10分)如图,已知是的直径,点、在上,且,过点作,垂足为求的长;若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积22(10分)已知顶点为A的抛物线ya(x)22经过点B(,2),点C(,2)(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPMMAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN,若点N落在x轴上,请直接写出Q点的坐标23
7、(12分)(1)计算:()1+(2018)04cos30(2)解不等式组:,并把它的解集在数轴上表示出来24(14分)如图,已知AB是O的弦,C是 的中点,AB=8,AC= ,求O半径的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据题中的按键顺序确定出显示的数即可【详解】解:根据题意得: =40,=0.4,0.42=0.04,=0.4,=40,402=400,4006=464,则第400次为0.4故选B【点睛】此题考查了计算器数的平方,弄清按键顺序是解本题的关键2、C【解析】根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐
8、一计算即可判断【详解】解:A、=2,此选项错误;B、不能进一步计算,此选项错误;C、a2a3=a5,此选项正确;D、(2a)3=8a3,此选项计算错误;故选:C【点睛】本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则3、B【解析】由三视图可知此几何体为圆锥,圆锥的底面半径为3,母线长为5,圆锥的底面周长等于圆锥的侧面展开扇形的弧长,圆锥的底面周长=圆锥的侧面展开扇形的弧长=2r=23=6,圆锥的侧面积=lr=65=15,故选B4、D【解析】试题分析:根据题意得a1且=,解得且a1观察四个答案,只有c1一定满足条件,故
9、选D考点:根的判别式;一元二次方程的定义5、C【解析】根据旋转的性质求解即可【详解】解:根据旋转的性质,A:与均为旋转角,故=,故A正确;B:,又,故B正确;D:,BC平分BBA,故D正确.无法得出C中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件6、D【解析】设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出a =1+3n(n为正整数),再代入a=2019即可得出结论【详解】设第n个图形有an个(n为正整数),观察图形,可知:a11+31,a21+32,a31+33,a41+34,an1+3n(n为正整数),a20191+3201
10、91故选:D【点睛】此题考查规律型:图形的变化,解题关键在于找到规律7、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可详解:等腰三角形的两个底角相等,(1)正确; 对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误 故选D点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理8、B【解析】a+b=3,(a+b)2=9a2+2ab+b2=9a
11、2+b2=77+2ab=9,7+2ab=9ab=1故选B考点:完全平方公式;整体代入9、B【解析】首先提取公因式a,再利用平方差公式分解因式得出答案【详解】4aa3=a(4a2)=a(2a)(2+a)故选:B【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键10、B【解析】A.括号前是负号去括号都变号; B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法【详解】A选项,(xy)=x+y,故A错误;B选项, (2)1=,故B正确;C选项,故C错误;D选项,22,故D错误【点睛】本题考查去括号法则的应用,分式的性质,二次
12、根式的算法,熟记知识点是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,能让两盏灯泡同时发光的概率,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比12
13、、 (-1,-2)【解析】试题分析:因为y=(x+1)22是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,2),故答案为(1,2)考点:二次函数的性质13、 【解析】(1)直接利用分式乘方运算法则计算得出答案;(2)直接利用分式除法运算法则计算得出答案【详解】(1)()2=;故答案为;(2) =故答案为【点睛】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键14、65【解析】根据两直线平行,同旁内角互补求出3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】mn,1=105,3=1801=180105=75=23=14075=65故答案为:65
14、.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出3.15、【解析】作辅助线,构建直角DMN,先根据菱形的性质得:DAC=60,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长【详解】解:过M作MNAD于N,四边形ABCD是菱形, EFAC,AE=AF=2,AFM=30,AM=1,RtAMN中,AMN=30, AD=AB=2AE=4, 由勾股定理得: 故答案为【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30所对的直角边是斜边的一半16、1【解析】设A、B两种商品的售价分别是1件x元和
15、1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y的值,进而求解即可【详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得,解得所以0.8(850+240)=1(元)即打折后,小敏买50件A商品和40件B商品仅需1元故答案为1【点睛】本题考查了利用二元一次方程组解决现实生活中的问题解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解17、-1【解析】试题分析:正方形ADEF的面积为4,正方形ADEF的边长为2,BF=2AF=4,AB=AF+BF=2+4=1设B点坐标为(t,1),则E点坐标(t-2,2),点B、E在反比例函数y=的
16、图象上,k=1t=2(t-2),解得t=-1,k=-1考点:反比例函数系数k的几何意义三、解答题(共7小题,满分69分)18、6+【解析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算【详解】解:原式=+81+2=3+41+=6+【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍19、(1)袋子中白球有2个;(2)【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求
17、得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:考点:列表法与树状图法;概率公式20、(3)证明见试题解析;(3)3【解析】试题分析:(3)先得出ODAC,有ODG=DGC,再由DGAC,得到DGC=90,ODG=90,得出ODFG,即可得出直线FG是O的切线(3)先得出ODFAGF,再由cosA=,得出cosDOF=;然后求出OF、AF的
18、值,即可求出AG、CG的值试题解析:(3)如图3,连接OD,AB=AC,C=ABC,OD=OB,ABC=ODB,ODB=C,ODAC,ODG=DGC,DGAC,DGC=90,ODG=90,ODFG,OD是O的半径,直线FG是O的切线;(3)如图3,AB=AC=30,AB是O的直径,OA=OD=303=5,由(3),可得:ODFG,ODAC,ODF=90,DOF=A,在ODF和AGF中,DOF=A,F=F,ODFAGF,cosA=,cosDOF=,OF=,AF=AO+OF=,解得AG=7,CG=ACAG=307=3,即CG的长是3考点:3切线的判定;3相似三角形的判定与性质;3综合题21、(1)
19、OE;(2)阴影部分的面积为【解析】(1)由题意不难证明OE为ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明COEAFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1) AB是O的直径,ACB=90,OEAC,OE/BC,又点O是AB中点,OE是ABC的中位线,D=60,B=60,又AB=6,BC=ABcos60=3,OE= BC=;(2)连接OC,D=60,AOC=120,OFAC,AE=CE,=,AOF=COF=60,AOF为等边三角形,AF=AO=CO,在RtCOE与RtAFE中,COEAF
20、E,阴影部分的面积=扇形FOC的面积,S扇形FOC=阴影部分的面积为【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.22、 (1) y(x)22;(2)POE的面积为或;(3)点Q的坐标为(,)或(,2)或(,2)【解析】(1)将点B坐标代入解析式求得a的值即可得;(2)由OPM=MAF知OPAF,据此证OPEFAE得=,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得【详解】解:(1)把点B(,2)代入ya(x)2
21、2,解得a1,抛物线的表达式为y(x)22,(2)由y(x)22知A(,2),设直线AB表达式为ykxb,代入点A,B的坐标得,解得,直线AB的表达式为y2x1,易求E(0,1),F(0,),M(,0),若OPMMAF,OPAF,OPEFAE,OPFA ,设点P(t,2t1),则,解得t1,t2,由对称性知,当t1时,也满足OPMMAF,t1,t2都满足条件,POE的面积OE|t|,POE的面积为或;(3)如图,若点Q在AB上运动,过N作直线RSy轴,交QR于点R,交NE的延长线于点S,设Q(a,2a1),则NEa,QN2a.由翻折知QNQN2a,NENEa,由QNEN90易知QRNNSE,即
22、=2,QR2,ES ,由NEESNSQR可得a2,解得a,Q(,),如图,若点Q在BC上运动,且Q在y轴左侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2)综上,点Q的坐标为(,)或(,2)或(,2)【点睛】本题主要考查二次函数的综合问题,解题的关键是
23、掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点23、 (1)-3;(2).【解析】分析:(1)代入30角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式= = -3.(2) 解不等式得: ,解不等式得:,不等式组的解集为:不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:,(,为正整数)即30角的余弦函数值是本题解题的关键.24、5【解析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设O的半径为r,在ACD中,利用勾股定理求得CD=2,在OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设O的半径为r,在ACD中,CD2+AD2=AC2,CD=2,在OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,O的半径为5.