2022-2023学年广西南宁市高三第三次测评数学试卷含解析.doc

上传人:茅**** 文档编号:87798591 上传时间:2023-04-17 格式:DOC 页数:17 大小:1.53MB
返回 下载 相关 举报
2022-2023学年广西南宁市高三第三次测评数学试卷含解析.doc_第1页
第1页 / 共17页
2022-2023学年广西南宁市高三第三次测评数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年广西南宁市高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西南宁市高三第三次测评数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率

2、最低的一项是基本音,其余的为泛音由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波下列函数中不能与函数构成乐音的是( )ABCD2函数图像可能是( )ABCD3水平放置的,用斜二测画法作出的直观图是如图所示的,其中 ,则绕AB所在直线旋转一周后形成的几何体的表面积为( )ABCD4在原点附近的部分图象大概是( )ABCD5已知等差数列中,若,则此数列中一定为0的是( )ABCD6已知集合A=x|y=lg(4x2),B=y|y=3x,x0时,AB=( )Ax|x2 Bx|1x2 Cx|1x2 D7用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末

3、位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( )A48B60C72D1208已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A240,18B200,20C240,20D200,189已知函数在区间上恰有四个不同的零点,则实数的取值范围是( )ABCD10蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验

4、法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率( )ABCD11若复数满足,则( )ABCD12记为等差数列的前项和.若,则( )A5B3C12D13二、填空题:本题共4小题,每小题5分,共20分。13如图,在中,已知,为边的中点若,垂足为,则的值为_ 14以,为圆心的两圆均过,与轴正半轴分别交于,且满足,则点的轨迹方程为_15已知内角,的对边分别为,则_16在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知动圆E与圆外切,并与直线相切,

5、记动圆圆心E的轨迹为曲线C.(1)求曲线C的方程;(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.18(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.19(12分)已知数列中,a1=1,其前n项和为,且满足(1)求数列的通项公式;(2)记,若数列为递增数列,求的取值范围20(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.21(12分)设复数满足(为虚数单位),则的模为_.22(10分)如图,在三棱锥AB

6、CD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.2、D【解析】先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,即函数为偶函数,故

7、排除选项A,C,当正数越来越小,趋近于0时,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.3、B【解析】根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.4、A【解析】分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确

8、选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,则函数为奇函数,排除C、D选项;当时,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.5、A【解析】将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.6、B【解析】试题分析:由集合A中的函数,得到,解得:,集合,由集合B中的函数,得到,集合,则,故选B考点:交集及其运算7、A【解析】对数字分类讨论,结合数字中

9、有且仅有两个数字相邻,利用分类计数原理,即可得到结论【详解】数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个数字出现在第位时,同理也有个数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个故满足条件的不同的五位数的个数是个故选【点睛】本题主要考查了排列,组合及简单计数问题,解题的关键是对数字分类讨论,属于基础题。8、A【解析】利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数【详解】样本容量为:(150+250+400)30%240,抽取的户主对四居室满意的人数为:故选A【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,

10、解题时要认真审题,注意统计图的性质的合理运用9、A【解析】函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或因为,当时,单调递减;当时,单调递增;所以在处取得最小值,最小值为因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且故选:A【点睛】本题考查复合函数的零点考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力10、A【解析】计算出黑色部分的面积与总面积的比,即可得解.【详

11、解】由,.故选:A【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.11、B【解析】由题意得,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.12、B【解析】由题得,解得,计算可得.【详解】,解得,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,由余弦定理,得,得,所以,所以点睛:本题考查平面向量的综合应用本题中存在垂直关系,所以在线性表示的过程中充分利用垂直关系,得到,所以本题转化为求长度,利用余弦定理和面积公式求解即可14、【

12、解析】根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,和的中点坐标为,且在线段的垂直平分线上,即,同理可得:,点的轨迹方程为故答案为:【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.15、【解析】利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【详解】由正弦定理得,故答案为:.【点睛】本题考查了正弦定理求角,三角恒等变换,属于基础题.16、【解析】结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解

13、参数即可【详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:【点睛】本题考查由三角函数图像求解解析式,数形结合思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据抛物线的定义,结合已知条件,即可容易求得结果;(2)设出直线的方程,联立抛物线方程,根据直线与抛物线相交则,结合由得到的斜率关系,即可求得

14、斜率的范围.【详解】(1)因为动圆与圆外切,并与直线相切,所以点到点的距离比点到直线的距离大. 因为圆的半径为,所以点到点的距离等于点到直线的距离,所以圆心的轨迹为抛物线,且焦点坐标为.所以曲线的方程. (2)设,由得,由得且., ,同理由,得,即,所以,由,得且, 又且,所以的取值范围为.【点睛】本题考查由抛物线定义求抛物线方程,涉及直线与抛物线相交结合垂直关系求斜率的范围,属综合中档题.18、(1);(2)证明见解析.【解析】(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,两式相减,分别算出和,利用换元法令和构造函数,根据导数

15、研究单调性,求出,即可证出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,所以. (2)由为方程的两个实根,得,两式相减,可得, 因此,令,由,得, 则,构造函数.则,所以函数在上单调递增,故,即, 可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.19、(1)(2)【解析】(1)项和转换可得,继而得到,可得解;(2)代入可得,由数列为递增数列可得,令,可证明为递增数列,即,即得解【

16、详解】(1),即,(2)=2-(2n+1)数列为递增数列,即令,即为递增数列,即的取值范围为【点睛】本题考查了数列综合问题,考查了项和转换,数列的单调性,最值等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.20、(1);(2)或【解析】试题分析:本题主要考查抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题等基础知识,同时考查考生的分析问题解决问题的能力、转化能力、运算求解能力以及数形结合思想. 第一问,设出直线方程与抛物线方程联立,利用韦达定理得到y1y2,y1y2,代入到中解出P的值;第二问,结合第一问的过程,利用两种方法求出的长,联立解出m的值,从而得到直线的

17、方程.试题解析:()设l:xmy2,代入y22px,得y22pmy4p1(*)设A(x1,y1),B(x2,y2),则y1y22pm,y1y24p,则因为,所以x1x2y1y212,即44p12,得p2,抛物线的方程为y24x 5分()由()(*)化为y24my21y1y24m,y1y22 6分设AB的中点为M,则|AB|2xmx1x2m(y1y2)44m24, 又, 由得(1m2)(16m232) (4m24)2,解得m23,所以,直线l的方程为,或 12分考点:抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题.21、1【解析】整理已知利用复数的除法运算方式计算,再由求模公式得答案

18、.【详解】因为,即所以的模为1故答案为:1【点睛】本题考查复数的除法运算与求模,属于基础题.22、(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由ABAD及线面垂直判定定理得AD平面ABC,即可得ADAC试题解析:证明:(1)在平面内,因为ABAD,所以.又因为平面ABC,平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.因为平面,所以 .又ABAD,平面ABC,平面ABC,所以AD平面ABC,又因为AC平面ABC,所以ADAC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁