2022-2023学年广东省深圳实验、珠海一中高三第二次诊断性检测数学试卷含解析.doc

上传人:茅**** 文档编号:87798455 上传时间:2023-04-17 格式:DOC 页数:22 大小:2.26MB
返回 下载 相关 举报
2022-2023学年广东省深圳实验、珠海一中高三第二次诊断性检测数学试卷含解析.doc_第1页
第1页 / 共22页
2022-2023学年广东省深圳实验、珠海一中高三第二次诊断性检测数学试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022-2023学年广东省深圳实验、珠海一中高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省深圳实验、珠海一中高三第二次诊断性检测数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A1B2C3D02已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )AB4C2D3已知函数,若方程恰有三个不相等的实根,则的取值范围为( )ABCD4在复平

2、面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是( )ABCD5阅读下面的程序框图,运行相应的程序,程序运行输出的结果是( )A11B1C29D286金庸先生的武侠小说射雕英雄传第12回中有这样一段情节,“洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为( )A20B24C25D267已知函数的定义域为,则函数的定义域为( )ABCD8设数列的各项均为正数,前项和为,且,则( )A128B65C64D639某调

3、查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A互联网行业从业人员中90后占一半以上B互联网行业中从事技术岗位的人数超过总人数的C互联网行业中从事运营岗位的人数90后比80前多D互联网行业中从事技术岗位的人数90后比80后多10已知数列 中, ,若对于任意的,不等式恒成立,则实数的取值范围为( )ABCD11设实数、满足约束条件,则的最小值为( )A2B24C16D1412如图,某几何体的三视图是由三

4、个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关二、填空题:本题共4小题,每小题5分,共20分。13已知,满足,则的展开式中的系数为_.14设等比数列的前项和为,若,则_15对任意正整数,函数,若,则的取值范围是_;若不等式恒成立,则的最大值为_16已知椭圆的左右焦点分别为,过且斜率为的直线交椭圆于,若三角形的面积等于,则该椭圆的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且, ,(1)若分别为,的中点,求证:平

5、面;(2)若,与平面所成角的正弦值,求二面角的余弦值18(12分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由19(12分)数列满足,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.20(12分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中, 若的值最

6、大, 求实数的取值范围.21(12分)如图,在多面体中,四边形是菱形,平面,是的中点.()求证:平面平面;()求直线与平面所成的角的正弦值.22(10分)如图,三棱柱的侧棱垂直于底面,且,是棱的中点.(1)证明:;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.【详解】由三视图还原原几何体如图,其中,为直角三角形.该三棱锥的表面中直角三角形的个数为3.故选:C.【点睛】本小题主要考查由三视图还原为原图,属于基础题.2、B【解析

7、】设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,当且仅当三点共线时,取“”号,的最小值为.故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.3、B【解析】由题意可将方程转化为,令,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,.因为,式两边同除以,得.所以方程有三个不等的正实根.记,则上述方程转化为.即,所以或.因为,当时,所以在,上单调递增,且时,.当时,在上单调递减,且时,.

8、所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.4、A【解析】由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:复数z=i(i为虚数单位)在复平面中对应点Z(0,1),(0,1),将绕原点O逆时针旋转得到,设(a,b),则,即,又,解得:,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.5、C【解析】根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值, 第一次循环:,;第二次循环

9、:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.6、D【解析】利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.7、A【解析】试题分析:由题意,得,解得,故选A考点:函数的定义域8、D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详

10、解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.9、D【解析】根据两个图形的数据进行观察比较,即可判断各选项的真假【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后

11、比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.10、B【解析】先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即 由累加法可得: 即对于任意的,不等式恒成立即 令 可得且即 可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够

12、由递推数列求出通项公式和后面的转化函数,属于难题.11、D【解析】做出满足条件的可行域,根据图形即可求解.【详解】做出满足的可行域,如下图阴影部分,根据图象,当目标函数过点时,取得最小值,由,解得,即,所以的最小值为.故选:D.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.12、B【解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该

13、几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数【详解】由题意,的展开式中的系数为故答案为:1【点睛】本题考查二项式定理,掌握二项式定理的应用是解题关键14、【解析】由题意,设等比数列的公比为,根据已知条件,列出方程组,求得的值,利用求和公式,即可求解【详解】由题意,设等比数列的公比为,因为,即,解得,所以.【点睛】本题主要考查了等比数列的通项公式,及前n项和公式的应用,其中解答中根据等比数列的

14、通项公式,正确求解首项和公比是解答本题的关键,着重考查了推理与计算能力,属于基础题15、 【解析】将代入求解即可;当为奇数时,则转化为,设,由单调性求得的最小值;同理,当为偶数时,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【详解】由题,解得.当为奇数时,由,得,而函数为单调递增函数,所以,所以;当为偶数时,由,得,设,单调递增,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【点睛】本题考查利用导函数求最值,考查分类讨论思想和转化思想.16、【解析】由题得直线的方程为,代入椭圆方程得:,设点,则有,由,且解出,进而求解出离心率.【详解】由题知,直线的方程

15、为,代入消得:,设点,则有,而,又,解得:,所以离心率.故答案为:【点睛】本题主要考查了直线与椭圆的位置关系,三角形面积计算与离心率的求解,考查了学生的运算求解能力三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)见解析(2) 【解析】试题分析:(1)第(1)问,转化成证明平面 ,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.试题解析:(1)连接,因为四边形为菱形,所以.因为平面平面,平面平面,平面,所以平面.又平面,所以.因为,所以.因为,所以平面.因为分别为,的中点,所以,

16、所以平面(2)设,由(1)得平面.由,得,.过点作,与的延长线交于点,取的中点,连接,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,所以平面,平面,因为,所以平面平面.所以,解得.在梯形中,易证,分别以,的正方向为轴,轴,轴的正方向建立空间直角坐标系.则,由,及,得,所以,.设平面的一个法向量为,由得令,得m=(3,1,2) 设平面的一个法向量为,由得令,得.所以又因为二面角是钝角,所以二面角的余弦值是.18、(1)(2

17、)是为定值,的横坐标为定值【解析】(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,由消去并整理得,直线的方程为:,直线的方程为:联系方程,解得,又因为所以所以的横坐标为定值【点睛】本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的

18、求法,考查运算求解能力,属于中档题.19、(1),;(2),证明见解析【解析】(1)利用已知条件建立等量关系求出数列的通项公式(2)利用裂项相消法求出数列的和,进一步利用放缩法求出结论【详解】(1),得是公比为的等比数列,当时,数列的前项积为,则,两式相除得,得,又得,;(2),故.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,数列的前项和的应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题20、(1),的分布列为0123P(1a)2(1a2)(2aa2)(2)【解析】(1)P()是“个人命中,3个人未命中”的概率其中的可能取值为0、1、2、3.P(0)

19、(1a)2(1a)2;P(1)(1a)2a(1a)(1a2);P(2)a(1a)a2(2aa2);P(3)a2.所以的分布列为0123P(1a)2(1a2)(2aa2)的数学期望为E()0(1a)21(1a2)2(2aa2)3.(2)P(1)P(0)(1a2)(1a)2a(1a);P(1)P(2)(1a2)(2aa2);P(1)P(3)(1a2)a2.由和0a1,得0a,即a的取值范围是.21、 ()详见解析;()【解析】试题分析:()连接交于,得,所以面,又 ,得面,即可利用面面平行的判定定理,证得结论;()如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量 ,利用向量和向量夹角

20、公式,即可求解与平面所成角的正弦值试题解析:()连接BD交AC于O,易知O是BD的中点,故OG/BE,BE面BEF,OG在面BEF外,所以OG/面BEF;又EF/AC,AC在面BEF外,AC/面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG面BEF;()如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则, , , ,设面ABF的法向量为,依题意有,令,直线AD与面ABF成的角的正弦值是 22、(1)详见解析;(2).【解析】(1)根据平面,四边形是矩形,由为中点,且,利用平面几何知识,可得,又平面,所以,根据线面垂直的判定定理可有平面,从而得证.(2)分别以,为,轴建立空间直角坐标系,得到,分别求得平和平面的法向量,代入二面角向量公式求解.【详解】(1)证明:平面,四边形是矩形,为中点,且,.,与相似,平面,平面,平面,平面,.(2)如图,分别以,为,轴建立空间直角坐标系,则,设平面的法向量为,则,解得:,同理,平面的法向量,设二面角的大小为,则.即二面角的余弦值为.【点睛】本题主要考查线线垂直、线面垂直的转化以及二面角的求法,还考查了转化化归的思想和推理论证、运算求解的能力,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁