2022-2023学年广东省广州市增城区四校高三一诊考试数学试卷含解析.doc

上传人:茅**** 文档编号:87798308 上传时间:2023-04-17 格式:DOC 页数:18 大小:1.83MB
返回 下载 相关 举报
2022-2023学年广东省广州市增城区四校高三一诊考试数学试卷含解析.doc_第1页
第1页 / 共18页
2022-2023学年广东省广州市增城区四校高三一诊考试数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年广东省广州市增城区四校高三一诊考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省广州市增城区四校高三一诊考试数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,.若存在,使得成立,则的最大值为( )ABCD2为得到的图象,只需要将的图象( )A向左平移个单位 B向左平移个单位C向右平移个单位 D向右平移个单位3已知函数,若函数的所有零点依

2、次记为,且,则( )ABCD4已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD5如图1,九章算术中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺. ABCD6函数f(x)的图象大致为()ABCD7已知双曲线:的左右焦点分别为,为双曲线上一点,为双曲线C渐近线上一点,均位于第一象限,且,则双曲线的离心率为( )ABCD8已知 若在定义域上恒成立,则的取值范围是( )AB

3、CD9中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )A12种B24种C36种D48种10做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为( )ABC1D211若,则下列不等式不能成立的是( )ABCD12在直角中,若,

4、则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,则_。14已知在ABC中,(2sin32,2cos32),(cos77,cos13),则_,ABC的面积为_15的展开式中的常数项为_.16等腰直角三角形内有一点P,则面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论的单调性;(2)曲线在点处的切线斜率为.(i)求;(ii)若,求整数的最大值.18(12分)已知首项为2的数列满足.(1)证明:数列是等差数列(2)令,求数列的前项和.19(12分)已知抛物线的焦点为,点在抛物线上,直线过点,且与抛物线交于,两点(1)

5、求抛物线的方程及点的坐标;(2)求的最大值20(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.21(12分)已知,求的最小值.22(10分)已知数列满足,且.(1)求证:数列为等比数列,并求出数列的通项公式;(2)设,求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意可知,由可得出,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出

6、,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,由于,则,同理可知,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,则,则,构造函数,其中,则.当时,此时函数单调递增;当时,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.2、D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向右平移个单位;故选D考点:三角函数的图像变换3、C【解析】令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得

7、.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.4、B【解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.5、B【解析】如图,已知,解得, ,解得.折断后的竹干高为

8、4.55尺故选B.6、D【解析】根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(x)f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.7、D【解析】 由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,设,则,解得,即,代入双曲线的方程可得,解得,故选D点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质

9、,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围)8、C【解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.当时,由,得,解得,此时;当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,则,此时;当时,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数

10、不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.9、C【解析】根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了

11、分析问题和解答问题的能力,属于基础题.10、C【解析】每一次成功的概率为,服从二项分布,计算得到答案.【详解】每一次成功的概率为,服从二项分布,故.故选:.【点睛】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.11、B【解析】根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.12、C【解析】在直角三角形ABC中,求得 ,再由向量的加减运算,运用平面向量基本定理,结合向量

12、数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值【详解】在直角中,若,则 故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知求,再利用和角正切公式,求得,【详解】因为所以cos因此.【点睛】本题考查了同角三角函数基本关系式与和角的正切公式。14、 【解析】根据向量数量积的坐标表示结合两角差的正弦公式的逆用即可得解;结合求出,根据面积公式即可得解.【详解】2(sin32cos77cos32sin77),故答案为:【点睛】此题考查平面向量与三角函数解

13、三角形综合应用,涉及平面向量数量积的坐标表示,三角恒等变换,根据三角形面积公式求解三角形面积,综合性强.15、31【解析】由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为: ,得解.【详解】解:,则的展开式中的常数项为:.故答案为:31.【点睛】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.16、【解析】利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,所以化简可得:则或,即或由,所以所以故答案为:【点睛】本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.三、解答题:共70分。解答应写出文字说

14、明、证明过程或演算步骤。17、(1)在上增;在上减;(2)(i);(ii)2【解析】(1)求导求出,对分类讨论,求出的解,即可得出结论;(2)(i)由,求出的值;(ii)由(i)得所求问题转化为,恒成立,设,只需,根据的单调性,即可求解.【详解】(1)当时,即在上增;当时,即在上增;在上减;(2)(i),.(),即,即,只需.当时,在单调递增,所以满足题意;当时,所以在上减,在上增,令,.在单调递减,所以所以在上单调递减,综上可知,整数的最大值为.【点睛】本题考查函数导数的综合应用,涉及函数的单调性、导数的几何意义、极值最值、不等式恒成立,考查分类讨论思想,属于中档题.18、(1)见解析;(2

15、)【解析】(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.19、(1),;(2)1【解析】(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my10,代入y24x,得,y2+4my40,设A(x1,y1

16、),B(x2,y2),则y1+y24m,y1y24,x1+x22+4m2,x1x21,(),(x22,),由此能求出的最大值【详解】(1)点F是抛物线y22px(p0)的焦点,P(2,y0)是抛物线上一点,|PF|3,23,解得:p2,抛物线C的方程为y24x,点P(2,n)(n0)在抛物线C上,n2428,由n0,得n2,P(2,2)(2)F(1,0),设直线l的方程为:x+my10,代入y24x,整理得,y2+4my40设A(x1,y1),B(x2,y2),则y1,y2是y2+4my40的两个不同实根,y1+y24m,y1y24,x1+x2(1my1)+(1my2)2m(y1+y2)2+4

17、m2,x1x2(1my1)(1my2)1m(y1+y2)+m2y1y21+4m24m21,(),(x22,),(x12)(x22)+()()x1x22(x1+x2)+4148m2+44+8m+88m2+8m+58(m)2+1当m时,取最大值1【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题20、(1);(2)【解析】(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动点的轨迹的方程;(2)设出切线的斜率分别为,切点,点,则可得过点的拋物线的切线方程为,联立抛物线方程并化简,由相切时

18、可得两条切线斜率关系;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出,可求得,结合点满足的方程可得的取值范围,即可求得的范围.【详解】(1)设点,点到直线的距离等于,化简得,动点的轨迹的方程为.(2)由题意可知,的斜率都存在,分别设为,切点,设点,过点的拋物线的切线方程为,联立,化简可得,即,.由,求得导函数,因为点满足,由圆的性质可得,即直线斜率的取值范围为.【点睛】本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.21、 【解析】讨论和的情况,然后再分对称轴和区间之间的关系,最后求出最小值【详解

19、】当时,它在上是减函数故函数的最小值为当时,函数的图象思维对称轴方程为当时,函数的最小值为当时,函数的最小值为当时,函数的最小值为综上,【点睛】本题主要考查了二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题。22、(1)证明见解析;(2)【解析】(1)根据题目所给递推关系式得到,由此证得数列为等比数列,并求得其通项公式.然后利用累加法求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和【详解】(1)已知,则,且,则为以3为首相,3为公比的等比数列,所以,.(2)由(1)得:,可得,则即.【点睛】本小题主要考查根据递推关系式证明等比数列,考查累加法求数列的通项公式,考查错位相减求和法,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁