2022-2023学年浙江省丽水市莲都区初中数学毕业考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:87798265 上传时间:2023-04-17 格式:DOC 页数:17 大小:834.50KB
返回 下载 相关 举报
2022-2023学年浙江省丽水市莲都区初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共17页
2022-2023学年浙江省丽水市莲都区初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年浙江省丽水市莲都区初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省丽水市莲都区初中数学毕业考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若分式在实数范围内有意义,则实数的取值范围是( )ABCD2图1和图2中所有的正方形都全等,将图1的正方形放在图2中的某一位置,所组成的图形不能围成正方体的位置是()ABCD3已知,则的值为ABCD4在一些美术字中,有的汉字是轴对称

2、图形下面4个汉字中,可以看作是轴对称图形的是()ABCD5的平方根是( )A2BC2D6如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A(2017,0)B(2017,)C(2018,)D(2018,0)7菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A3.5B4C7D148用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()ABCD9已知a为整数,且a,则a等于A1B2C3D41

3、0实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()Aa+b0Ba|2|CbD二、填空题(共7小题,每小题3分,满分21分)11百子回归图是由 1,2,3,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四 位“19 99 12 20”标示澳门回归日期,最后一行中间两 位“23 50”标示澳门面积,同时它也是十阶幻方, 其每行 10 个数之和、每列 10 个数之和、每条对角线10 个数之和均相等,则这个和为_百 子 回 归12若使代数式有意义,则x的取值范围是_13若一次函数y=2(x+1)+4的值是正数,则x的取值范围是_14如图,在每个小正方形的边长为1的网格

4、中,点A,B,C均在格点上()AC的长等于_;()在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_15某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_16我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中ab)叫做互为交换函数如y=3x2+4x与y=4x2+3x是互为交换函数如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_17如图所示,三角形ABC的面积为1cm1AP垂直B的平分线BP于P则与三角形PBC的面积相

5、等的长方形是( )ABCD三、解答题(共7小题,满分69分)18(10分)P是O内一点,过点P作O的任意一条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于O的“幂值”或“幂值”的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于C

6、的“幂值”为6,请直接写出b的取值范围_19(5分)如图,抛物线yx2+5x+n经过点A(1,0),与y轴交于点B(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且PAB是以AB为腰的等腰三角形,试求P点坐标20(8分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;(3)A2B2C2的面积是 平方单位21(10分)

7、先化简,再求值:(x+2y)(x2y)+(20xy38x2y2)4xy,其中x2018,y122(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式; (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积23(12分)先化简

8、,再求值:(1+),其中x=+124(14分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 ;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据分式有意义的条件即可求出答案【详解】解:由分式有意义的条件可知:,故选:【点睛】本题考查分式有意义的条件

9、,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.2、A【解析】由平面图形的折叠及正方体的表面展开图的特点解题【详解】将图1的正方形放在图2中的的位置出现重叠的面,所以不能围成正方体,故选A【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形注意:只要有“田”字格的展开图都不是正方体的表面展开图3、C【解析】由题意得,4x0,x40,解得x=4,则y=3,则=,故选:C. 4、A【解析】根据轴对称图形的概念判断即可【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形故选:A【点睛】本题考查的是轴对称图形的概念轴对称图形的

10、关键是寻找对称轴,图形两部分折叠后可重合5、D【解析】先化简,然后再根据平方根的定义求解即可【详解】=2,2的平方根是,的平方根是故选D【点睛】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错6、C【解析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题【详解】解:正六边形ABCDEF一共有6条边,即6次一循环;20176=336余1,点F滚

11、动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,点F滚动2107次时的纵坐标与相同,横坐标的次数加1,点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,点F滚动2107次时的坐标为(2018,),故选C【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型7、A【解析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB【详解】菱形ABCD的周长为28,AB=284=7,OB=ODH为AD边中点,O

12、H是ABD的中位线,OHAB7=3.1故选A【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键8、A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A9、B【解析】直接利用,接近的整数是1,进而得出答案【详解】a为整数,且a,a=1故选:【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键10、D【解析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案【详解】a2,2b1 A.a+b0,故A不符合题意;B.a|2|,故B不符合题意;C.b1,故C不符合题意;D.0,故D符合题意;故

13、选D【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键二、填空题(共7小题,每小题3分,满分21分)11、505【解析】根据已知得:百子回归图是由1,2,3,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和10,代入求解即可【详解】1100的总和为: =5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=505010=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案12、

14、x2【解析】直接利用分式有意义则其分母不为零,进而得出答案【详解】分式有意义,x的取值范围是:x+20,解得:x2.故答案是:x2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.13、x1【解析】根据一次函数的性质得出不等式解答即可【详解】因为一次函数y=2(x+1)+4的值是正数,可得:2(x+1)+40,解得:x1,故答案为x1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.14、5 见解析 【解析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与ABC全等的AMN,易证MNAC,从而得到MN与AC的交点即为所求D点.【

15、详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,ABCMAN,AMN=BAC,MAD+CAB=MAD+AMN=90,MNAC,易解得MAN以MN为底时的高为,AB2=ADAC,AD=AB2AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.15、100(1+x)2=121【解析】根据题意给出的等量关系即可求出答案【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关

16、系,本题属于基础题型16、1【解析】根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题【详解】由题意函数y=1x1+bx的交换函数为y=bx1+1x y=1x1+bx=,y=bx1+1x=,函数y=1x1+bx与它的交换函数图象顶点关于x轴对称,=且,解得:b=1故答案为1【点睛】本题考查了二次函数的性质理解交换函数的意义是解题的关键17、B【解析】过P点作PEBP,垂足为P,交BC于E,根据AP垂直B的平分线BP于P,即可求出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积【详解】解:过P点作PEBP,垂足为P,交B

17、C于E,AP垂直B的平分线BP于P,ABP=EBP,又知BP=BP,APB=BPE=90,ABPBEP,AP=PE,APC和CPE等底同高,SAPC=SPCE,三角形PBC的面积=三角形ABC的面积=cm1,选项中只有B的长方形面积为cm1,故选B三、解答题(共7小题,满分69分)18、(1)20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明见解析;(2)点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP

18、,连接AA、BB先证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(2)连接OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中

19、,由勾股定理得:PB=2,PA=PB=2,O的“幂值”=22=20,故答案为:20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,点P关于O的“幂值”为定值;(2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,AP=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于

20、O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b,直线CP的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键19、(1);(2)(0,)或(0,4)【解

21、析】试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;(2)本题要分两种情况进行讨论:PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标试题解析:(1)抛物线经过点A(1,0),;(2)抛物线的解析式为,令,则,B点坐标(0,4),AB=,当PB=AB时,PB=AB=,OP=PBOB=P(0,),当PA=AB时,P、B关于x轴对称,P(0,4),因此P点的坐标为(0,)或(0,4)考点:二次函数综合题20、(1)(2,2);(2)(1,0);(

22、3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理21、 (xy)2;2.【解析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可【详解】

23、原式= x24y2+4xy(5y2-2xy)4xyx24y2+5y22xyx22xy+y2,(xy)2,当x2028,y2时,原式(20282)2(2)22【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.22、(1)二次函数的表达式为:y=x24x+3;(2)点P的坐标为:(0,3+3)或(0,33)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【解析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数

24、的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当PBC为等腰三角形时分三种情况进行讨论:CP=CB;BP=BC;PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2t,SMNB=(2t)2t=t2+2t,把解析式化为顶点式,根据二次函数的性质即可得MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=4,c=3,二次函数的表达式为:y=x24x+3;(2)令y=0,则x24x+3=0,解得:x=1或x=3,B(

25、3,0),BC=3,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PCOC=33P1(0,3+3),P2(0,33);当PB=PC时,OP=OB=3,P3(0,-3);当BP=BC时,OC=OB=3此时P与O重合,P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,33)或(3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2t,则DN=2t,SMNB=(2t)2t=t2+2t=(t1)2+1,当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在

26、对称轴上x轴下方2个单位处23、,1+ 【解析】运用公式化简,再代入求值.【详解】原式= ,当x=+1时,原式=【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法24、(1),; (2);(3).【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁