2022-2023学年山东省蒙阴县第一中学高三3月份第一次模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:87798210 上传时间:2023-04-17 格式:DOC 页数:20 大小:2.21MB
返回 下载 相关 举报
2022-2023学年山东省蒙阴县第一中学高三3月份第一次模拟考试数学试卷含解析.doc_第1页
第1页 / 共20页
2022-2023学年山东省蒙阴县第一中学高三3月份第一次模拟考试数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022-2023学年山东省蒙阴县第一中学高三3月份第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省蒙阴县第一中学高三3月份第一次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )ABCD2函数的图象可能是下面的图象( )ABCD3已知椭圆+=1(ab0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦

2、距,若ABF是直角三角形,则该椭圆的离心率为( )ABCD4双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为( )A3BC6D5下列函数中,图象关于轴对称的为( )AB,CD6已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点给出以下判断:直线与直线的斜率乘积为;轴;以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是( )ABCD7已知a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8的展开式中的系数为( )ABCD9如图,已知平面,、是直线上的两点,、

3、是平面内的两点,且,是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是( )ABCD10如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )ABCD11函数的图象可能为( )ABCD12已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A240,18B200,20C240,20D200,18二、填空题:本题共4小题,每小题5分,共20分。13如图是由3个全等的三角形与中间的一个小等边

4、三角形拼成的一个大等边三角形,设, ,则的面积为_.14如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为_.15在平面直角坐标系xOy中,已知双曲线(a0)的一条渐近线方程为,则a_16假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里长跑,刚好有2人跑出优秀的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程

5、;(2)求曲线上的点到直线的距离的最大值与最小值.18(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的

6、回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111()当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?()2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数

7、据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.53901938576403152515470010015022533850719(12分)已知的内角、的对边分别为、,满足.有三个条件:;.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.20(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.21(12分)设函数.(

8、1)求的值;(2)若,求函数的单调递减区间.22(10分)已知是公比为的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,即:,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及

9、双曲线的渐近线方程.2、C【解析】因为,所以函数的图象关于点(2,0)对称,排除A,B当时,所以,排除D选C3、A【解析】联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,=0,因为,由平面向量垂直的坐标表示可得, 因为,所以a2-c2=ac,两边同时除以可得,解得e=或(舍去),所以该椭圆的离心率为.故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关

10、键;属于中档题、常考题型.4、A【解析】根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.5、D【解析】图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性. 判断函数

11、奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数 (2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称6、B【解析】由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,从而,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线的方程为,代入抛物线的方程,有设点,的坐标分别为,则,所则直线与直线的斜率乘积为所以正确将代入抛物线的方程可得,从而,根据抛物线的对称性可知,两点关

12、于轴对称,所以直线轴所以正确如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,则所以不正确故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题7、D【解析】根据面面平行的判定及性质求解即可【详解】解:a,b,a,b,由ab,不一定有,与可能相交;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的既不充分也不必要条件故选:D.【点睛】本题

13、主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题8、C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.9、B【解析】为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,同理为直线与平面所成的

14、角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果10、B【解析】根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B【点睛】本题考查了几何

15、体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题11、C【解析】先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.12、A【解析】利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数【详解】样本容量为:(150+250+400)30%240,抽取的户主对四居室满意的人数为:故选A【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用二、填空题:本题共4小题,每小

16、题5分,共20分。13、【解析】根据个全等的三角形,得到,设,求得,利用余弦定理求得,再利用三角形的面积公式,求得三角形的面积.【详解】由于三角形是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,所以.在三角形中,.设,则.由余弦定理得,解得.所以三角形边长为,面积为.故答案为:【点睛】本题考查了等边三角形的面积计算公式、余弦定理、全等三角形的性质,考查了推理能力与计算能力,属于中档题14、【解析】根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点

17、睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题15、3【解析】双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.16、【解析】分跑出优秀的人为:甲、乙和甲、丙和乙、丙三种情况分别计算再求和即可.【详解】刚好有2人跑出优秀有三种情况:其一是只有甲、乙两人跑出优秀的概率为;其二是只有甲、丙两人跑出优秀的概率为;其三是只有乙、丙两人跑出优秀的概率为,三种情况相加得.即刚好有2人跑

18、出优秀的概率为.故答案为:【点睛】本题主要考查了分类方法求解事件概率的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)最大值,最小值【解析】(1)由曲线的参数方程,得两式平方相加求解,根据直线的极坐标方程,展开有,再根据求解.(2)因为曲线C是一个半圆,利用数形结合,圆心到直线的距离减半径即为最小值,最大值点由图可知.【详解】(1)因为曲线的参数方程为所以两式平方相加得:因为直线的极坐标方程为.所以所以即(2)如图所示:圆心C到直线的距离为:所以圆上的点到直线的最小值为:则点M(2,0)到直线的距离为最大值:【点睛】本题主要考查参数方程,普通

19、方程及极坐标方程的转化和直线与圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.18、(1)适宜(2)(3)()回归方程可靠()防护措施有效【解析】(1)根据散点图即可判断出结果.(2)设,则,求出,再由回归方程过样本中心点求出,即可求出回归方程.(3)()利用表中数据,计算出误差即可判断回归方程可靠;()当时,与真实值作比较即可判断有效.【详解】(1)根据散点图可知:适宜作为累计确诊人数与时间变量的回归方程类型;(2)设,则,;(3)()时,当时,当时,所以(2)的回归方程可靠:()当时,10150远大于7111,所以防护措施有效.【点睛】本题考查了函数模型的应用,在求非线性

20、回归方程时,现将非线性的化为线性的,考查了误差的计算以及用函数模型分析数据,属于基础题.19、(1);(2).【解析】(1)先求出角,进而可得出,则中有且只有一个正确,正确,然后分正确和正确两种情况讨论,结合三角形的面积公式和余弦定理可求得的值;(2)计算出和,计算出,可得出,进而可求得的面积.【详解】(1)因为,所以,得,为钝角,与矛盾,故中仅有一个正确,正确.显然,得.当正确时,由,得(无解);当正确时,由于,得;(2)如图,因为,则,则,.【点睛】本题考查解三角形综合应用,涉及三角形面积公式和余弦定理的应用,考查计算能力,属于中等题.20、(1)证明见详解;(2)证明见详解【解析】(1)

21、由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,则对于任意都成立,则成等比数列,设公比为,验证得答案.【详解】(1)证明:由是等比数列,由等比数列的性质可得:等比数列是“数列”. (2)证明:既是“数列”又是“数列”,可得,() (),() 可得:对于任意都成立,即 成等比数列,即成等比数列, 成等比数列, 成等比数列,设,()数列是“数列”时,由()可得: 时,由()可得: ,可得,同理可证成等比数列, 数列是等比数列【点睛】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能

22、力,属于难题.21、(1)(2)的递减区间为和【解析】(1)化简函数,代入,计算即可;(2)先利用正弦函数的图象与性质求出函数的单调递减区间,再结合即可求出.【详解】(1),从而.(2)令.解得.即函数的所有减区间为,考虑到,取,可得,故的递减区间为和.【点睛】本题主要考查了三角函数的恒等变形,正弦函数的图象与性质,属于中档题.22、见解析【解析】选择或或,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【详解】选择:因为,所以,所以令,即,所以使得的正整数的最小值为;选择:因为,所以,因为,所以不存在满足条件的正整数;选择:因为,所以,所以令,即,整理得当为偶数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为【点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁