2022-2023学年河北省唐山市二中学中考三模数学试题含解析.doc

上传人:茅**** 文档编号:87798145 上传时间:2023-04-17 格式:DOC 页数:21 大小:890.50KB
返回 下载 相关 举报
2022-2023学年河北省唐山市二中学中考三模数学试题含解析.doc_第1页
第1页 / 共21页
2022-2023学年河北省唐山市二中学中考三模数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022-2023学年河北省唐山市二中学中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河北省唐山市二中学中考三模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1实数的倒数是( )ABCD2如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DEAC,EFAB,FDB

2、C,则DEF的面积与ABC的面积之比等于( )A13B23C2D33在平面直角坐标系中,将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是( )A(2,4)B(1,5)C(1,-3)D(-5,5)4下列生态环保标志中,是中心对称图形的是()A B C D5如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为( )A(1,4)B(7,4)C(6,4)D(8,3)6的相反数是()AB-CD7如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转

3、盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表: 转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )A0.33B0.34C0.20D0.358已知关于x的一元二次方程3x2+4x5=0,下列说法正

4、确的是( )A方程有两个相等的实数根B方程有两个不相等的实数根C没有实数根D无法确定9如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )ABC5cosD10已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=反比例函数y=在第一象限图象经过点A,与BC交于点FSAOF=,则k=()A15B13C12D511计算3(9)的结果是( )A12B12C6D612近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A1.8105B1.8104C0.18106D18104二、填空题

5、:(本大题共6个小题,每小题4分,共24分)13如图,已知ABCD,F为CD上一点,EFD=60,AEC=2CEF,若6BAE15,C的度数为整数,则C的度数为_14如图甲,对于平面上不大于90的MON,我们给出如下定义:如果点P在MON的内部,作PEOM,PFON,垂足分别为点E、F,那么称PE+PF的值为点P相对于MON的“点角距离”,记为d(P,MON)如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于xOy,满足d(P,xOy)=10,点P的坐标是_15某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运

6、动,以下是根据调查结果绘制的统计图表的一部分 那么,其中最喜欢足球的学生数占被调查总人数的百分比为_%16如图,O的直径AB=8,C为的中点,P为O上一动点,连接AP、CP,过C作CDCP交AP于点D,点P从B运动到C时,则点D运动的路径长为_17双察下列等式:,则第n个等式为_(用含n的式子表示)18如图,在平面直角坐标系中,函数y=x和y=x的图象分别为直线l1,l2,过点A1(1,)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,依次进行下去,则点A2018的横坐标为_三、解答题:(本大题共9个小题,

7、共78分,解答应写出文字说明、证明过程或演算步骤19(6分)下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时设上网时间为t小时(I)根据题意,填写下表:月费/元上网时间/h超时费/(元)总费用/(元)方式A3040方式B50100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75t100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?20(6分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高

8、了工作效率图表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象图分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?21(6分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD80cm,宽AB48cm,小强身高166cm,下半身FG100cm,洗漱时下半身与地面成80(FGK80),身体前倾成125(EFG125),脚与洗漱台距离GC15cm(点D,C,G,K在同一直线上)(co

9、s800.17,sin800.98,1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?22(8分)如图,ABC中,CD是边AB上的高,且求证:ACDCBD;求ACB的大小23(8分)边长为6的等边ABC 中,点D ,E 分别在AC ,BC 边上,DEAB,EC 2如图1,将DEC 沿射线EC 方向平移,得到DEC,边DE与AC 的交点为M ,边CD与ACC的角平分线交于点N.当CC多大时,四边形MCND为菱形?并说明理由如图2,将DEC 绕点C 旋转(0360),得到D EC,连接AD,BE.边DE的中点为P.在

10、旋转过程中,AD和BE有怎样的数量关系?并说明理由;连接AP ,当AP 最大时,求AD的值(结果保留根号)24(10分)如图,已知在梯形ABCD中,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.25(10分)如图,在RtABC中,C=90,以BC为直径的O交AB于点D,切线DE交AC于点E.(1)求证:A=ADE;(2)若AD=8,DE=5,求BC的长26(12分)全面两孩政策实施后,甲,乙两

11、个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.27(12分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙你认为这个规则公平吗?请用列表法或画树状图法加以说明参考答案一、选择题(

12、本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】因为,所以的倒数是.故选D.2、A【解析】DEAC,EFAB,FDBC,C+EDC=90,FDE+EDC=90,C=FDE,同理可得:B=DFE,A=DEF,DEFCAB,DEF与ABC的面积之比= ,又ABC为正三角形,B=C=A=60EFD是等边三角形,EF=DE=DF,又DEAC,EFAB,FDBC,AEFCDEBFD,BF=AE=CD,AF=BD=EC,在RtDEC中,DE=DCsinC=DC,EC=cosCDC=DC,又DC+BD=BC=AC=DC,DEF与ABC的面积之比等于:

13、故选A点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比3、B【解析】试题分析:由平移规律可得将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(1,5),故选B考点:点的平移4、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【考点】中心对称图形5、B【解析

14、】如图,经过6次反弹后动点回到出发点(0,3),20186=3362,当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4)故选C6、C【解析】根据只有符号不同的两个数互为相反数进行解答即可.【详解】与只有符号不同,所以的相反数是,故选C【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.7、A【解析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的

15、幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确8、B【解析】试题分析:先求出=4243(5)=760,即可判定方程有两个不相等的实数根故答案选B.考点:一元二次方程根的判别式9、D【解析】利用所给的角的余弦值求解即可【详解】BC=5米,CBA=,AB=故选D【点睛】本题主要考查学生对坡度、坡角的理解及运用10、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而

16、依据点A的坐标得到k的值【详解】过点A作AMx轴于点M,如图所示设OA=a=OB,则,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a,a)四边形OACB是菱形,SAOF=,OBAM=,即aa=39,解得a=,而a0,a=,即A(,6),点A在反比例函数y=的图象上,k=6=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=S菱形OBCA11、A【解析】根据有理数的减法,即可解答【详解】 故选A【点睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加

17、上这个数的相反数12、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】180000=1.8105,故选A【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、36或37【解析】分析:先过E作EGAB,根据平行线的性质可得AEF=BAE+DFE,再设CEF=x,则AEC=2x,根据

18、6BAE15,即可得到63x-6015,解得22x25,进而得到C的度数详解:如图,过E作EGAB,ABCD,GECD,BAE=AEG,DFE=GEF,AEF=BAE+DFE,设CEF=x,则AEC=2x,x+2x=BAE+60,BAE=3x-60,又6BAE15,63x-6015,解得22x25,又DFE是CEF的外角,C的度数为整数,C=60-23=37或C=60-24=36,故答案为:36或37点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等14、(6,4)或(4,6)【解析】设点P的横坐标为x,表示出纵坐标,然后列方

19、程求出x,再求解即可【详解】解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,当点P在第一象限时,x+x-2=10,解得x=6,x-2=4,P(6,4);当点P在第三象限时,-x-x+2=10,解得x=-4,x-2=-6,P(-4,-6)故答案为:(6,4)或(-4,-6)【点睛】本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键15、1%【解析】依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比【详解】被调查学生的总数为1020%=50人,最喜欢篮球的有503

20、2%=16人,则最喜欢足球的学生数占被调查总人数的百分比=100%=1%,故答案为:1【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系16、 【解析】分析:以AC为斜边作等腰直角三角形ACQ,则AQC=90,依据ADC=135,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据ACQ中,AQ=4,即可得到点D运动的路径长为=2详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则AQC=90O的直径为AB,C为的中点,APC=45又CDCP,DCP=90,PDC=45,ADC=

21、135,点D的运动轨迹为以Q为圆心,AQ为半径的又AB=8,C为的中点,AC=4,ACQ中,AQ=4,点D运动的路径长为=2 故答案为2 点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键17、【解析】探究规律后,写出第n个等式即可求解【详解】解:则第n个等式为 故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.18、1【解析】根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题【详解】解:由题意可得,A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),20184=5042,20182=1

22、009,点A2018的横坐标为:1,故答案为1【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(I)见解析;(II)见解析;(III)见解析【解析】(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案【详解】(I)当t=40h时,方式A超时费:0.0560(4025)=45,总费用:30+45=75,当t=

23、100h时,方式B超时费:0.0560(10050)=150,总费用:50+150=200,填表如下:月费/元上网时间/h超时费/(元)总费用/(元)方式A30404575方式B50100150200(II)当0t25时,y1=30,当t25时,y1=30+0.0560(t25)=3t45,所以y1=;当0t50时,y2=50,当t50时,y2=50+0.0560(t50)=3t100,所以y2=;(III)当75t100时,选用C种计费方式省钱理由如下:当75t100时,y1=3t45,y2=3t100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75t100

24、时,选用C种计费方式省钱【点睛】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键20、(1)1件;(2)y甲=30t(0t5);y乙=;(3)小时;【解析】(1)根据图可得出总工作量为370件,根据图可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0t2),y=cx+d(2t5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案【详解】(1)由图得,总工作量为370件,由图可得出乙

25、完成了220件,故甲5时完成的工作量是1(2)设y甲的函数解析式为y=kt(k0),把点(5,1)代入可得:k=30故y甲=30t(0t5);乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,当0t2时,可得y乙=20t;当2t5时,设y=ct+d,将点(2,40),(5,220)代入可得:,解得:,故y乙=60t80(2t5)综上可得:y甲=30t(0t5);y乙=(3)由题意得:,解得:t=,故改进后2=小时后乙与甲完成的工作量相等【点睛】本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.21、 (1) 小强的头部点E与地面

26、DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=80,FN=100sin8098,EFG=125,EFM=18012510=45,FM=66cos45=46.53,MN=FN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=

27、66sin4546.53,PH46.53,GN=100cos8017,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm22、(1)证明见试题解析;(2)90【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明ACDCBD;(2)由(1)知ACDCBD,然后根据相似三角形的对应角相等可得:A=BCD,然后由A+ACD=90,可得:BCD+ACD=90,即ACB=90试题解析:(1)CD是边AB上的高,ADC=CDB=90,ACDCBD;(2)ACDCBD,A=BCD,在ACD中,ADC=90,A+ACD=90,B

28、CD+ACD=90,即ACB=90 考点:相似三角形的判定与性质23、 (1) 当CC=时,四边形MCND是菱形,理由见解析;(2)AD=BE,理由见解析;【解析】(1)先判断出四边形MCND为平行四边形,再由菱形的性质得出CN=CM,即可求出CC;(2)分两种情况,利用旋转的性质,即可判断出ACDBCE即可得出结论;先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论【详解】(1)当CC=时,四边形MCND是菱形理由:由平移的性质得,CDCD,DEDE,ABC是等边三角形,B=ACB=60,ACC=180-ACB=120,CN是ACC的角平分线,DEC=ACC=60=B

29、,DEC=NCC,DECN,四边形MCND是平行四边形,MEC=MCE=60,NCC=NCC=60,MCE和NCC是等边三角形,MC=CE,NC=CC,EC=2,四边形MCND是菱形,CN=CM,CC=EC=;(2)AD=BE,理由:当180时,由旋转的性质得,ACD=BCE,由(1)知,AC=BC,CD=CE,ACDBCE, AD=BE,当=180时,AD=AC+CD,BE=BC+CE,即:AD=BE,综上可知:AD=BE如图连接CP,在ACP中,由三角形三边关系得,APAC+CP,当点A,C,P三点共线时,AP最大,如图1,在DCE中,由P为DE的中点,得APDE,PD=,CP=3,AP=

30、6+3=9,在RtAPD中,由勾股定理得,AD=【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大24、(1)见解析;(2);(3)当或8时,与相似.【解析】(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,.(2)解:作于M,于N.则四边

31、形是矩形.在中,.(3)解:,相似时,与相似,当时,此时,当时,此时,综上所述,当PB=5或8时,与相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.25、(1)见解析(2)7.5【解析】(1)只要证明A+B=90,ADE+B=90即可解决问题;(2)首先证明AC=2DE=10,在RtADC中,求得DC=6,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,可得x2+6

32、2=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,DE是切线,ODE=90,ADE+BDO=90,ACB=90,A+B=90,OD=OB,B=BDO,A=ADE;(2)连接CD,A=ADEAE=DE,BC是O的直径,ACB=90,EC是O的切线,ED=EC,AE=EC,DE=5,AC=2DE=10,在RtADC中,DC=,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,x2+62=(x+8)2-102,解得x=4.5,BC=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.26、(1);(2)【解析】(1)根据

33、可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率27、(1)必然,不可能;(2);(3)此游戏不公平【解析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;则选择乙的概率为:,故此游戏不公平【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁