《2022-2023学年安徽省马鞍山二中、安师大附中高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省马鞍山二中、安师大附中高考数学三模试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C2018D20172在平面直角坐标系中,已知点,若动点满足 ,则的取值范围是( )ABCD3函数的图
2、象大致为( )ABCD4已知函数,若时,恒成立,则实数的值为( )ABCD5设命题:,则为A,B,C,D,6某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D907抛物线的焦点为,准线为,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是( )ABCD8定义,已知函数,则函数的最小值为( )ABCD9若,满足约束条件,则的取值范围为( )ABCD10已知平面向量满足,且,则所夹的锐角为( )ABCD011若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为
3、( )A2BCD12如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关二、填空题:本题共4小题,每小题5分,共20分。13已知,为虚数单位,且,则=_.14一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_15如图是一个算法的伪代码,运行后输出的值为_16若x,y满足,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
4、17(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.18(12分)已知六面体如图所示,平面,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.19(12分)已知,求证:(1);(2).20(12分)已知的内角的对边分别为,且.()求;()若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.21(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽
5、取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.22(10分)ABC的内角的对边分别为,已知ABC的面积为(1)求;(2)若求ABC的周长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意计算,计算,得到答案.【详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于
6、数列公式方法的综合应用.2、D【解析】设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设 ,则, 为点的轨迹方程点的参数方程为(为参数) 则由向量的坐标表达式有:又故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:直接法;定义法;相关点法;参数法;待定系数法3、A【解析】确定函数在定义域内的单调性,计算时的函数值可排除三个选项【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,排除C,只有A可满足故选:A.【点睛
7、】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项4、D【解析】通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得故选:D【点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.5、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本
8、题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.6、A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.7、B【解析】试题分析:设在直线上的投影分别是,则,又是中点,所以,则,在中,所以,即,所以,故选B考点:抛物线的性质【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线
9、(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系8、A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,则,(当且仅当,即时“”成立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.9、B【解析】根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【详解】画出可行域,如图所示:由
10、图可知,当直线经过点时,取得最小值5;经过点时,取得最大值5,故.故选:B【点睛】本题考查根据线性规划求范围,属于基础题.10、B【解析】根据题意可得,利用向量的数量积即可求解夹角.【详解】因为即而所以夹角为故选:B【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.11、B【解析】由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直双曲线的渐近线方程为,得则离心率故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.12、B【解析】根据三视图还原直观图如下图所示,几何体的体
11、积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】解:利用复数相等,可知由有14、【解析】利用相互独立事件概率的乘法公式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中
12、的概率是次传播是相互独立的,故为故答案为:【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.15、13【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.16、5【解析】先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。
13、三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1) (2)或【解析】(1)根据为真命题列出不等式,进而求得实数的取值范围;(2)应用复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.【详解】(1),且,解得所以当为真命题时,实数的取值范围是.(2)由,可得,又当时,.当为真命题,且为假命题时,与的真假性相同,当假假时,有,解得;当真真时,有,解得;故当为真命题且为假命题时,可得或.【点睛】本题主要考查结合不等式的含有量词的命题的恒成立问题,存在性问题,考查复合命题的真假判断,意在考查学生对这些知识的掌握水平和分析推理能力.18、(1)证明见
14、解析(2)【解析】(1)连接,设,连接.通过证明,证得直线平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的正弦值.【详解】(1)连接,设,连接,因为,所以,所以,在中,因为,所以,且平面,故平面.(2)因为,所以,因为,平面,所以平面,所以,取所在直线为轴,取所在直线为轴,取所在直线为轴,建立如图所示的空间直角坐标系,由已知可得,所以,因为,所以,所以点的坐标为,所以,设为平面的法向量,则,令,解得,所以,即为平面的一个法向量.,同理可求得平面的一个法向量为所以所以二面角的正弦值为【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于
15、中档题.19、(1)见解析;(2)见解析【解析】(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论【详解】(1),当且仅当a=b=c等号成立,;(2)由基本不等式,同理,当且仅当a=b=c等号成立【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立解题关键是发现基本不等式的形式,方法是综合法20、();()有最大值,最大值为3.【解析】()利用正弦定理将角化边,再由余弦定理计算可得;()由正弦定理可得,则,再根据正弦函数的性质计算可得;【详解】()由得再由正弦定理得因此,又因为,所以.()当时,的周长有最大值,且最大值为3,理由如下:由正弦定理
16、得,所以,所以.因为,所以,所以当即时,取到最大值2,所以的周长有最大值,最大值为3.【点睛】本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档题.21、(1)元;(2)32家;(3)分布列见解析;【解析】(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,.,所以的分布列为
17、数学期望【点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.22、 (1)(2) .【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为.试题解析:(1)由题设得,即.由正弦定理得.故.(2)由题设及(1)得,即.所以,故.由题设得,即.由余弦定理得,即,得.故的周长为.点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.