2022-2023学年广西壮族自治区南宁市第三中学高考冲刺押题(最后一卷)数学试卷含解析.doc

上传人:茅**** 文档编号:87798058 上传时间:2023-04-17 格式:DOC 页数:18 大小:1.89MB
返回 下载 相关 举报
2022-2023学年广西壮族自治区南宁市第三中学高考冲刺押题(最后一卷)数学试卷含解析.doc_第1页
第1页 / 共18页
2022-2023学年广西壮族自治区南宁市第三中学高考冲刺押题(最后一卷)数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年广西壮族自治区南宁市第三中学高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西壮族自治区南宁市第三中学高考冲刺押题(最后一卷)数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点给出以下判断:以为直径的圆与抛物线准线相离;直线与直线的斜

2、率乘积为;设过点,的圆的圆心坐标为,半径为,则其中,所有正确判断的序号是( )ABCD2如图,是圆的一条直径,为半圆弧的两个三等分点,则( )ABCD3设,且,则( )ABCD4设函数的定义域为,命题:,的否定是( )A,B,C,D,5已知复数z满足iz2+i,则z的共轭复数是()A12iB1+2iC12iD1+2i6已知正项等比数列的前项和为,则的最小值为( )ABCD7设x、y、z是空间中不同的直线或平面,对下列四种情形:x、y、z均为直线;x、y是直线,z是平面;z是直线,x、y是平面;x、y、z均为平面.其中使“且”为真命题的是( )ABCD8已知复数满足,则的值为( )ABCD29已

3、知定义在上的奇函数,其导函数为,当时,恒有则不等式的解集为( )ABC或D或10已知函数是偶函数,当时,函数单调递减,设,则的大小关系为()ABCD11下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )ABCD12执行如图的程序框图,若输出的结果,则输入的值为( )ABC3或D或二、填空题:本题共4小题,每小题5分,共20分。13函数的极大值为_.14能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是_.15在平面直角坐标系xOy中,已知双曲线(a0)的一条渐近线方程为,则a_1

4、6已知平面向量,的夹角为,且,则=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状

5、况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,的大小关系.18(1

6、2分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.19(12分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.20(12分)已知函数,记的最小值为.()解不等式;()若正实数,满足,求证:.21(12分)已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于122(10分)如图1,在等腰梯形中,两腰,底边,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,分别为,的中点.(1)证明:平面.(2)求直线与平面所成

7、角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对于,利用抛物线的定义,利用可判断;对于,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于,将代入抛物线的方程可得,从而,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,则所以正确由题意可设直线的方程为,代入抛物线的方程,有设点,的坐标分别为,则,

8、所以则直线与直线的斜率乘积为所以正确将代入抛物线的方程可得,从而,根据抛物线的对称性可知,两点关于轴对称,所以过点,的圆的圆心在轴上由上,有,则所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以于是,代入,得,所以所以正确故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.2、B【解析】连接、,即可得到,再根据平面向量的数量积及运算律计算可得;【详解】解:连接、,是半圆弧的两个三等分点, ,且,所以四边形为棱形,故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.3、C【解析】将等式变形后,利用二次根式的性质判断出

9、,即可求出的范围.【详解】 即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.4、D【解析】根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.5、D【解析】两边同乘-i,化简即可得出答案【详解】iz2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为6、D【解析】由,可求出等比数列的通项公式,进而可知当时,;当时,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,得,解得,得.

10、当时,;当时,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.7、C【解析】举反例,如直线x、y、z位于正方体的三条共点棱时用垂直于同一平面的两直线平行判断.用垂直于同一直线的两平面平行判断.举例,如x、y、z位于正方体的三个共点侧面时.【详解】当直线x、y、z位于正方体的三条共点棱时,不正确; 因为垂直于同一平面的两直线平行,正确;因为垂直于同一直线的两平面平行,正确;如x、y、z位于正方体的三个共点侧面时, 不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.8、C【

11、解析】由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.9、D【解析】先通过得到原函数为增函数且为偶函数,再利用到轴距离求解不等式即可.【详解】构造函数,则由题可知,所以在时为增函数;由为奇函数,为奇函数,所以为偶函数;又,即即又为开口向上的偶函数所以,解得或故选:D【点睛】此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.10、A【解析】根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数 图象关于轴对称图象关于对称时,单调递减

12、时,单调递增又且 ,即本题正确选项:【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.11、C【解析】令圆的半径为1,则,故选C12、D【解析】根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为或3,故选:D.【点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求函的定义域,再对函数进行求导,再解不等式得单调区

13、间,进而求得极值点,即可求出函数的极大值【详解】函数,令得,当时,函数单调递增;当时,函数单调递减,当时,函数取到极大值,极大值为.故答案为:【点睛】本题考查利用导数研究函数的极值,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意定义域优先法则的应用14、答案不唯一,如【解析】根据对基本函数的理解可得到满足条件的函数.【详解】由题意,不妨设,则在都成立,但是在是单调递增的,在是单调递减的,说明原命题是假命题.所以本题答案为,答案不唯一,符合条件即可.【点睛】本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.1

14、5、3【解析】双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.16、1【解析】根据平面向量模的定义先由坐标求得,再根据平面向量数量积定义求得;将化简并代入即可求得.【详解】,则,平面向量,的夹角为,则由平面向量数量积定义可得,根据平面向量模的求法可知,代入可得,解得,故答案为:1.【点睛】本题考查了平面向量模的求法及简单应用,平面向量数量积的定义及运算,属于基础题.三、解答题:共70分

15、。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,根据古典概型求出即可;(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“,则(E),求出即可;(3)根据题意,写出即可【详解】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,有效问卷共有(份,其中受访者中膳食合理习惯良好的人数是人,故(A);(2)设该区“卫生习惯状况良好者“,“体育锻

16、炼状况良好者“、“膳食合理状况良好者”事件分别为,根据题意,可知(A),(B),(C),设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“则.所以该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯至少具备2个良好习惯的概率为0.766.(3)【点睛】本题考查了古典概型求概率,独立性事件,互斥性事件求概率等,考查运算能力和事件应用能力,中档题18、(1)证明见详解;(2)或或【解析】(1)(2)首先用基本不等式得到,然后解出不等式即可【详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:

17、或或【点睛】1.要熟练掌握绝对值的三角不等式,即2.应用基本不等式求最值时要满足“一正二定三相等”.19、(1)1;(2)证明见解析.【解析】(1)将不等式化为,求解得出,根据解集确定正数的值;(2)利用基本不等式以及不等式的性质,得出,三式相加,即可得证.【详解】(1)解:不等式,即不等式,而,于是依题意得(2)证明:由(1)知,原不等式可化为,同理,三式相加得,当且仅当时取等号综上.【点睛】本题主要考查了求绝对值不等式中参数的范围以及基本不等式的应用,属于中档题.20、()()见证明【解析】()由题意结合不等式的性质零点分段求解不等式的解集即可;()首先确定m的值,然后利用柯西不等式即可证

18、得题中的不等式.【详解】()当时,即,;当时,;当时,即,.综上所述,原不等式的解集为.(),当且仅当时,等号成立.的最小值.,即,当且仅当即时,等号成立.又,时,等号成立.【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,绝对值三角不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.21、(1);(2)见解析【解析】(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果 ;(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.【详解】(1),由, 记,由,且时,单调递减,时,单调递增, 由题意,方程有两个不同解,所以

19、;(2)解法一:由(1)知,在区间上存在极大值点,且,所以的极大值为, 记,则,因为,所以,所以时,单调递减,时,单调递增, 所以,即函数的极大值不小于1. 解法二:由(1)知,在区间上存在极大值点,且,所以的极大值为, 因为,所以.即函数的极大值不小于1.【点睛】本题考查导数研究函数的单调性,极值,考查学生综合分析能力与转化能力,是一道中档题.22、(1)证明见解析 (2)【解析】(1)先证,再证,由可得平面 ,从而推出平面 ;(2) 建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.【详解】(1)证明:连接,由图1知,四边形为菱形,且,所以是正三角形,从而.同理可证,所以平面.又,所以平面,因为平面,所以平面平面.易知,且为的中点,所以,所以平面.(2)解:由(1)可知,且四边形为正方形.设的中点为,以为原点,以,所在直线分别为,轴,建立空间直角坐标系,则,所以,.设平面的法向量为,由得取.设直线与平面所成的角为,所以,所以直线与平面所成角的正弦值为.【点睛】本题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁