《2022-2023学年日照市重点名校中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年日照市重点名校中考数学模拟精编试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列图形是中心对称图形的是( )ABCD2如图是测量一物体体积的过程:步骤一:将180 mL的水装进
2、一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A10 cm3以上,20 cm3以下B20 cm3以上,30 cm3以下C30 cm3以上,40 cm3以下D40 cm3以上,50 cm3以下3不等式组 的整数解有()A0个B5个C6个D无数个4若分式有意义,则的取值范围是( )A;B;C;D.5如图,已知O的半径为5,AB是O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为()A1B2
3、C3D862018的相反数是()A2018B2018C2018D7如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2B1:3C1:4D1:18把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A16B17C18D199在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A20B25C30D3510抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)
4、D(-2,-3)11如图,若锐角ABC内接于O,点D在O外(与点C在AB同侧),则C与D的大小关系为()ACDBCDCC=DD无法确定12如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D二、填空题:(本大题共6个小题,每小题4分,共24分)13若代数式的值不小于代数式的值,则x的取值范围是_14如图,在平面直角坐标系中,点P的坐标为(0,4),直线yx3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为_15已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 16方程x+1
5、=的解是_17如图,AB是O的直径,AB=2,点C在O上,CAB=30,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为_ 18已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第_象限三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,RtABC中,ABC90,点D,F分别是AC,AB的中点,CEDB,BEDC(1)求证:四边形DBEC是菱形;(2)若AD3, DF1,求四边形DBEC面积20(6分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来
6、的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角BAE=68,新坝体的高为DE,背水坡坡角DCE=60.求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米,参考数据:sin 680.93,cos 680.37,tan 682.5,1.73)21(6分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水
7、果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.22(8分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FGBE交AE于点G(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O求证:FOED=ODEF23(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗
8、加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?24(10分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图根据
9、以上信息,解答下列问题:(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名25(10分)如图,在平行四边形ABCD中,连接AC,做ABC的外接圆O,延长EC交O于点D,连接BD、AD,BC与AD交于点F分,ABC=ADB。(1)求证:AE是O的切线;(2)若AE=12,CD=10,求O的半径。26(12分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为
10、30,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐求此标牌上端与下端之间的距离(1.732,结果精确到0.1m)27(12分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中
11、心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B.考点:中心对称图形.【详解】请在此输入详解!2、C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可详解:设玻璃球的体积为x,则有解得30x1故一颗玻璃球的体积在30cm3以上,1cm3以下故选C点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围3、B【解析】先解每一个不等式,求出不等式组的解集,再求整数解即可【详解】解不等式x+30,得x3,解不等式x2,得x2,不等式组的解集为3x2,整数解有:2,1,0,1,2共5个,故选B【点睛】本题主
12、要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值一般方法是先解不等式组,再根据解集求出特殊值4、B【解析】分式的分母不为零,即x-21【详解】分式有意义,x-21,.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零5、B【解析】连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可【详解】解:由题意得,当点P为劣弧AB的中点时,PQ最小,连接OP、OA,由垂径定理得,点Q在OP上,AQ=AB=4,在RtAOB中,OQ=3,PQ=OP-OQ=2,故选:B【点睛】本题考查的是垂径
13、定理、勾股定理,掌握垂径定理的推论是解题的关键6、B【解析】分析:只有符号不同的两个数叫做互为相反数详解:-1的相反数是1故选:B点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键7、B【解析】根据中位线定理得到DEBC,DE=BC,从而判定ADEABC,然后利用相似三角形的性质求解.【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=1:4,ADE的面积:四边形BCED的面积=1:3;故选B【点睛】本题考查三角形中位线定理及相似三角形的判定与性质8、A【解析】一个n边形剪去一个角后,剩下的形
14、状可能是n边形或(n+1)边形或(n-1)边形故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.9、B【解析】设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:,当时,(亿),400-375=25,该行可贷款总量减少了25亿.故选B.10、A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根
15、据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h11、A【解析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:ACB=AEB,AEBD,CD故选:A【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键12、D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtA
16、BE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D二、填空题:(本大题共6个小题,每小题4分,共24分)13、x【解析】根据题意列出不等式,依据解不等式得基本步骤求解可得【详解】解:根据题意,得:,6(3x1)5(15x),18x6525x,18x+25x5+6,43x11,x,故答案为x【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键14、【解析】认真审题,根据垂线段最短得出PMAB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用PBMABO,即可求出本题的答案【详解】解:如图,过点P作PMAB,则:PMB=90,当P
17、MAB时,PM最短,因为直线y=x3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,3),在RtAOB中,AO=4,BO=3,AB=,BMP=AOB=90,B=B,PB=OP+OB=7,PBMABO,即:,所以可得:PM=15、1【解析】试题分析:因为2+24,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1考点:等腰三角形的性质;三角形三边关系16、x=1【解析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解【详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=
18、-1,经检验x=-1是增根,无理方程的解为x=1故答案为x=117、【解析】作出D关于AB的对称点D,则PC+PD的最小值就是CD的长度,在COD中根据边角关系即可求解.【详解】解:如图:作出D关于AB的对称点D,连接OC,OD,CD.又点C在O上,CAB=30,D为弧BC的中点,即,BAD=CAB=15.CAD=45.COD=90.则COD是等腰直角三角形.OC=OD=AB=1,故答案为:.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.18、【解析】直接利用反比例函数的增减性进而得出图象的分布【详解】反比例函数y(k0),在其图象所在的每个象限内,y
19、的值随x的值增大而减小,它的图象所在的象限是第一、三象限故答案为:一、三【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)见解析;(1)4 【解析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(1)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答【详解】(1)证明:CEDB,BEDC,四边形DBEC为平行四边形又RtABC中,ABC=90
20、,点D是AC的中点,CD=BD=AC,平行四边形DBEC是菱形;(1)点D,F分别是AC,AB的中点,AD=3,DF=1,DF是ABC的中位线,AC=1AD=6,SBCD=SABCBC=1DF=1又ABC=90,AB= = = 4平行四边形DBEC是菱形,S四边形DBEC=1SBCD=SABC=ABBC=41=4点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=SABC是解(1)的关键.20、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
21、【解析】解:在RtBAE中,BAE=680,BE=162米,(米)在RtDEC中,DGE=600,DE=176.6米,(米)(米)工程完工后背水坡底端水平方向增加的宽度AC约为37.3米在RtBAE和RtDEC中,应用正切函数分别求出AE和CE的长即可求得AC的长21、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.【解析】(1)设每盒售价应为x元,根据月销量=980-30超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每盒利润销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论【详解】解
22、:设每盒售价元.依题意得:解得:答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元依题意: 令:化简:解得:(舍),答:的值为.【点睛】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.22、(1)证明见解析;(2)AG=;(3)证明见解析.【解析】(1)根据正方形的性质得到ADBC,ABCD,ADCD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BMBE,得到GFFH,由GFAD,得到,等量代换得到,即,于是得到结论【详
23、解】解:(1)四边形ABCD是正方形,ADBC,ABCD,AD=CD,GFBE,GFBC,GFAD,ABCD,AD=CD,GF=BF;(2)EB=1,BC=4,=4,AE=,=4,AG=;(3)延长GF交AM于H,GFBC,FHBC,BM=BE,GF=FH,GFAD, ,FOED=ODEF【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等23、(1)应安排4天进行精加工,8天进行粗加工(2)=安排1天进行精加工,9天进行粗加工,可以获得最多利润为元【解析】解:(1)设应安排天进行精加工,天进行粗加工, 根据题
24、意得解得答:应安排4天进行精加工,8天进行粗加工.(2)精加工吨,则粗加工()吨,根据题意得=要求在不超过10天的时间内将所有蔬菜加工完,解得 又在一次函数中,随的增大而增大,当时,精加工天数为=1,粗加工天数为安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.24、(1)120,30%;(2)作图见解析;(3)1【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全
25、意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1) 1215%=120人;36120=30%;(2)12045%=54人,补全统计图如下:(3)1800=1人.考点:条形统计图;扇形统计图;用样本估计总体.25、(1)证明见解析;(2)【解析】(1)作辅助线,先根据垂径定理得:OABC,再证明OAAE,则AE是O的切线;(2)连接OC,证明ACEDAE,得,计算CE的长,设O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出
26、可得结论【详解】(1)证明:连接OA,交BC于G,ABC=ADBABC=ADE,ADB=ADE,OABC,四边形ABCE是平行四边形,AEBC,OAAE,AE是O的切线;(2)连接OC,AB=AC=CE,CAE=E,四边形ABCE是平行四边形,BCAE,ABC=E,ADC=ABC=E,ACEDAE,AE=12,CD=10,AE2=DECE,144=(10+CE)CE,解得:CE=8或-18(舍),AC=CE=8,RtAGC中,AG=2,设O的半径为r,由勾股定理得:r2=62+(r-2)2,r=,则O的半径是【点睛】此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练
27、掌握各自的判定与性质是解本题的关键26、大型标牌上端与下端之间的距离约为3.5m【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离试题解析:设AB,CD 的延长线相交于点E,CBE=45,CEAE,CE=BE,CE=16.651.65=15,BE=15,而AE=AB+BE=1DAE=30,DE11.54,CD=CEDE=1511.543.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m27、.【解析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取1,2,所以把x=0代入计算即可【详解】,=,当x=0时,原式=.