2022-2023学年江苏省淮安市盱眙县十校联考最后数学试题含解析.doc

上传人:茅**** 文档编号:87797981 上传时间:2023-04-17 格式:DOC 页数:15 大小:709.50KB
返回 下载 相关 举报
2022-2023学年江苏省淮安市盱眙县十校联考最后数学试题含解析.doc_第1页
第1页 / 共15页
2022-2023学年江苏省淮安市盱眙县十校联考最后数学试题含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2022-2023学年江苏省淮安市盱眙县十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省淮安市盱眙县十校联考最后数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()ABCD2化简的结果是()A1BCD3若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD4若关于x的一元二次方程(k1)x2+2x

2、2=0有两个不相等的实数根,则k的取值范围是()AkBkCk且k1Dk且k15如图: 在中,平分,平分,且交于,若,则等于( )A75B100 C120 D1256若分式的值为0,则x的值为()A-2B0C2D27一个多边形内角和是外角和的2倍,它是( )A五边形B六边形C七边形D八边形8八边形的内角和为()A180B360C1 080D1 4409的绝对值是()ABCD10二次函数y3(x1)2+2,下列说法正确的是()A图象的开口向下B图象的顶点坐标是(1,2)C当x1时,y随x的增大而减小D图象与y轴的交点坐标为(0,2)二、填空题(本大题共6个小题,每小题3分,共18分)11若顺次连接

3、四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_12如图,在四边形ABCD中,ADBC,AB=CD且AB与CD不平行,AD=2,BCD=60,对角线CA平分BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为_13已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为_14甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是_km/h15如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_.16如图,AOB是直

4、角三角形,AOB90,OB2OA,点A在反比例函数y的图象上若点B在反比例函数y的图象上,则k的值为_三、解答题(共8题,共72分)17(8分)如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D(1)求证:DB=DE;(2)若AB=12,BD=5,求O的半径. 18(8分)新定义:如图1(图2,图3),在ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到ABC,若BAC+BAC=180,我们称ABC是ABC的“旋补三角形”,ABC的中线AD叫做ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)若ABC是等边三角形(如图

5、2),BC=1,则AD= ;若BAC=90(如图3),BC=6,AD= ;(猜想论证)(2)在图1中,当ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且APD是BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长19(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解

6、集为 20(8分)计算:|1|2sin45+21(8分)如图,在ABC中,AB=BC,CDAB于点D,CD=BDBE平分ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:ADCFDB;(2)求证:(3)判断ECG的形状,并证明你的结论.22(10分)如图,一次函数y=k1x+b(k10)与反比例函数的图象交于点A(-1,2),B(m,-1)求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使ABP为等腰三角形,请你直接写出P点的坐标23(12分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包

7、时,每周可售出200包,每涨价1元,就少售出5包若供货厂家规定市场价不得低于30元/包试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?24春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游租车公司:按日收取固定租金80元,另外再按租车时间计费共享汽车:无固定租金,直接以租车时间(时)计费如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的

8、函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BCAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分2、A【解析】原式=(x1)2+=+=1,故选A3、B【解析】解:根据题意可得

9、:反比例函数处于二、四象限,则在每个象限内为增函数,且当x0时y0,当x0时,y0,.4、C【解析】根据题意得k-10且=2-4(k-1)(-2)0,解得:k且k1故选C【点睛】本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac,关键是熟练掌握:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根5、B【解析】根据角平分线的定义推出ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值【详解】解:CE平分ACB,CF平分ACD,ACE=ACB,ACF=ACD,即ECF=(ACB+ACD)=90,EF

10、C为直角三角形,又EFBC,CE平分ACB,CF平分ACD,ECB=MEC=ECM,DCF=CFM=MCF,CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1故选:B【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出ECF为直角三角形6、C【解析】由题意可知:,解得:x=2,故选C.7、B【解析】多边形的外角和是310,则内角和是2310720设这个多边形是n边形,内角和是(n2)180,这样就得到一个关

11、于n的方程,从而求出边数n的值【详解】设这个多边形是n边形,根据题意得:(n2)1802310解得:n1故选B【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决8、C【解析】试题分析:根据n边形的内角和公式(n-2)180 可得八边形的内角和为(8-2)180=1080,故答案选C.考点:n边形的内角和公式.9、C【解析】根据负数的绝对值是它的相反数,可得答案【详解】-=,A错误;-=,B错误;=,D错误;=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.10、B【解

12、析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案【详解】解:A、因为a30,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2+k中,对称轴为xh,顶点坐标为(h,k)二、填空题(本大题共6个小题,每小题3分,共18分)11、ACBD【解析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到FEH=90,又EF为三角形ABD的中位线,根据中位线定理得到

13、EF与DB平行,根据两直线平行,同旁内角互补得到EMO=90,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到AOD=90,根据垂直定义得到AC与BD垂直【详解】四边形EFGH是矩形,FEH=90,又点E、F、分别是AD、AB、各边的中点,EF是三角形ABD的中位线,EFBD,FEH=OMH=90,又点E、H分别是AD、CD各边的中点,EH是三角形ACD的中位线,EHAC,OMH=COB=90,即ACBD故答案为:ACBD【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.12、2【解析

14、】将PA+PB转化为PA+PC的值即可求出最小值【详解】解:E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,B点关于EF的对称点C点,AC即为PA+PB的最小值,BCD=, 对角线AC平分BCD,ABC=, ZBCA=,BAC=,AD=2,PA+PB的最小值=.故答案为: .【点睛】求PA+PB的最小值, PAPB不能直接求, 可考虑转化PAP的值,从而找出其最小值求解.13、y=【解析】解:设这个反比例函数的表达式为y=P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,x1y1=x2y2=k,=,=,=,=,k=2(x2x1)x2=x1+2,x2x1=2,k=

15、22=4,这个反比例函数的解析式为:y=故答案为y=点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数同时考查了式子的变形14、3.6【解析】分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题详解:由题意,甲速度为6km/h当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇设乙的速度为xkm/h4.56+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义解答这类问题时,也可以通过构造方程解决问题15、2【解析】分析:由主视图

16、得出长方体的长是6,宽是2,这个几何体的体积是16,设高为h,则62h=16,解得:h=1它的表面积是:212+262+162=216、2【解析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作ACx轴,BDx轴,分别于C,D根据条件得到ACOODB,得到:=1,然后用待定系数法即可【详解】过点A,B作ACx轴,BDx轴,分别于C,D设点A的坐标是(m,n),则AC=n,OC=mAOB=90,AOC+BOD=90DBO+BOD=90,DBO=AOCBDO=ACO=90,BDOOCA,OB=1OA,BD=1m,OD=1n因为点A在反比例函数y=的图象上,mn=1点B在反比例函数y=的图象上

17、,B点的坐标是(-1n,1m)k=-1n1m=-4mn=-2故答案为-2【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键三、解答题(共8题,共72分)17、(1)证明见解析;(2) 【解析】试题分析:(1)由切线性质及等量代换推出4=5,再利用等角对等边可得出结论;(2)由已知条件得出sinDEF和sinAOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)DCOA, 1+3=90, BD为切线,OBBD, 2+5=90, OA=OB, 1=2,3=4,4=5,在DEB中, 4=5,DE=DB.

18、(2)作DFAB于F,连接OE,DB=DE, EF=BE=3,在 RTDEF中,EF=3,DE=BD=5,EF=3 , DF=sinDEF= , AOE=DEF, 在RTAOE中,sinAOE= , AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.18、(1)2;3;(2)AD=BC;(3)作图见解析;BC=4;【解析】(1)根据等边三角形的性质可得出AB=AC=1、BAC=60,结合“旋补三角形”的定义可得出AB=AC=1、BAC=120,利用等腰三角形的三线合一可得出ADC=90,通过解直角三角形可求

19、出AD的长度;由“旋补三角形”的定义可得出BAC=90=BAC、AB=AB、AC=AC,进而可得出ABCABC(SAS),根据全等三角形的性质可得出BC=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B作BEAC,且BE=AC,连接CE、DE,则四边形ACCB为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出BAC=ABE、BA=AB、CA=EB,进而可证出BACABE(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外

20、角圆圆心,过点P作PFBC于点F,由(2)的结论可求出PF的长度,在RtBPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度【详解】(1)ABC是等边三角形,BC=1,AB=AC=1,BAC=60,AB=AC=1,BAC=120AD为等腰ABC的中线,ADBC,C=30,ADC=90在RtADC中,ADC=90,AC=1,C=30,AD=AC=2BAC=90,BAC=90在ABC和ABC中,ABCABC(SAS),BC=BC=6,AD=BC=3故答案为:2;3(2)AD=BC证明:在图1中,过点B作BEAC,且BE=AC,连接CE、DE,则四边形ACCB为平行四边形BAC+BAC=14

21、0,BAC+ABE=140,BAC=ABE在BAC和ABE中,BACABE(SAS),BC=AEAD=AE,AD=BC(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PFBC于点FPB=PC,PFBC,PF为PBC的中位线,PF=AD=3在RtBPF中,BFP=90,PB=5,PF=3,BF=1,BC=2BF=4【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)利用解含30角的直角三角形求出AD=AC;牢记直角三角形斜边上的中线等于斜边的一半;(2)

22、构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度19、(I)x1;()x2;(III)见解析;()x1【解析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集【详解】(I)解不等式(1),得x1;()解不等式(2),得x2;()把不等式(1)和(2)解集在数轴上表示出来,如下图所示:()原不等式组的解集为x1【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键20、1【解析】直接利用负指数幂的性质以及绝对值的性质、特殊

23、角的三角函数值分别化简得出答案【详解】原式=(1)2+24=1+24=1【点睛】此题主要考查了实数运算,正确化简各数是解题关键21、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)首先根据AB=BC,BE平分ABC,得到BEAC,CE=AE,进一步得到ACD=DBF,结合CD=BD,即可证明出ADCFDB;(2)由ADCFDB得到AC=BF,结合CE=AE,即可证明出结论;(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由DBF=GBC=GCB=ECF,得ECO=45,结合BEAC,即可判断出ECG的形状.【详解】解:(1)AB=BC,BE平分ABCBEACCDA

24、BACD=ABE(同角的余角相等)又CD=BDADCFDB(2)AB=BC,BE平分ABCAE=CE则CE=AC由(1)知:ADCFDBAC=BFCE=BF(3)ECG为等腰直角三角形,理由如下:由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,则EGC=2CBG=ABC=45,又BEAC,故ECG为等腰直角三角形.【点睛】本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大22、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,

25、0)或(0,0)【解析】(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,反比例函数的解析式为B(m,-1)在上,m=2,由题意,解得:,一次函数的解析式为y=-x+1(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0)【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.23、(1)y=5x+350;(2)w=5x2+4

26、50x7000(30x40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题试题解析:解:(1)由题意可得:y=200(x30)5=5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=5x+350;(2)由题意可得,w=(x20)(5x+ 350)=5x2

27、+450x7000(30x70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=5x2+450x7000(30x40);(3)w=5x2+450x7000=5(x45)2+1二次项系数50,x=45时,w取得最大值,最大值为1答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值24、(1)y1=kx+80,y2=30x;(2)见解析【解析】(1)设y1=kx+80,将(2,110)代入求解即可;设y2=

28、mx,将(5,150)代入求解即可;(2)分y1=y2,y1y2,y1y2三种情况分析即可.【详解】解:(1)由题意,设y1=kx+80,将(2,110)代入,得110=2k+80,解得k=15,则y1与x的函数表达式为y1=15x+80;设y2=mx,将(5,150)代入,得150=5m,解得m=30,则y2与x的函数表达式为y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1y2得,15x+8030x,解得x;由y1y2得,15x+8030x,解得x故当租车时间为小时时,两种选择一样;当租车时间大于小时时,选择租车公司合算;当租车时间小于小时时,选择共享汽车合算【点睛】本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁