2022-2023学年广东省深圳市罗湖区重点中学中考数学全真模拟试卷含解析.doc

上传人:茅**** 文档编号:87797883 上传时间:2023-04-17 格式:DOC 页数:23 大小:1.04MB
返回 下载 相关 举报
2022-2023学年广东省深圳市罗湖区重点中学中考数学全真模拟试卷含解析.doc_第1页
第1页 / 共23页
2022-2023学年广东省深圳市罗湖区重点中学中考数学全真模拟试卷含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2022-2023学年广东省深圳市罗湖区重点中学中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省深圳市罗湖区重点中学中考数学全真模拟试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知反比例函数y,当3x2时,y的取值范围是()A0y1B1y2C2y3D3y22如图,抛物线y=ax2+bx+c与x轴

2、交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:3a+b0;-1a-;对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+c=n-1有两个不相等的实数根其中结论正确的个数为( )A1个 B2个 C3个 D4个3若3x3y,则下列不等式中一定成立的是 ( )ABCD4计算(18)9的值是( )A-9B-27C-2D25如图,ABCD,DECE,1=34,则DCE的度数为()A34B56C66D546下列算式中,结果等于x6的是()Ax2x2x2 Bx2+x2+x2 Cx2x3 Dx4+x27如图,把一个矩形纸片ABCD沿E

3、F折叠后,点D、C分别落在D、C的位置,若EFB=65,则AED为( )。A70B65C50D258已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )ABCD9若代数式在实数范围内有意义,则x的取值范围是( )ABCD10将二次函数yx2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )Ay(x1)22By(x1)22Cy(x1)22Dy(x1)2211人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A0.861

4、04B8.6102C8.6103D8610212下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A B C D二、填空题:(本大题共6个小题,每小题4分,共24分)13当x _ 时,分式 有意义14如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sinEAB的值为 15如图,点A在双曲线y的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC2AB,点E在线段AC上,且AE3EC,点D为OB的中点,若ADE的面积为3,则k的值为_16已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每

5、个内角是_度17如图,中,则 _18如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,ACB和ECD都是等腰直角三角形,ACBECD90,D为AB边上一点求证:ACEBCD;若AD5,BD12,求DE的长20(6分)解方程:(1)x27x180(2)3x(x1)22x21(6分)观察猜想:在RtABC中,BAC=90,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90,点D落在点E处,如图所示,则线段CE和线段BD的数

6、量关系是 ,位置关系是 探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图中画出图形,并证明你的判断拓展延伸:如图,BAC90,若ABAC,ACB=45,AC=,其他条件不变,过点D作DFAD交CE于点F,请直接写出线段CF长度的最大值22(8分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐求此标牌上端与下端之间的距离(1.732,结果精确到0.1m)23(

7、8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PAy轴于点A,点P绕点A顺时针旋转60得到点P,我们称点P是点P的“旋转对应点”(1)若点P(4,2),则点P的“旋转对应点”P的坐标为 ;若点P的“旋转对应点”P的坐标为(5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P的坐标为 ;(2)如图2,点Q是线段AP上的一点(不与A、P重合),点Q的“旋转对应点”是点Q,连接PP、QQ,求证:PPQQ;(3)点P与它的“旋转对应点”P的连线所在的直线经过点(,6),求直线PP与x轴的交点坐标24(10分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点

8、,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O(1)若AP=1,则AE= ;(2)求证:点O一定在APE的外接圆上;当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值25(10分)如图1,抛物线y=ax2+bx2与x轴交于点A(1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2)(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD

9、下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标26(12分)如图1,在平面直角坐标系xOy中,抛物线yax2+bx与x轴交于点A(1,0)和点B(3,0)绕点A旋转的直线l:ykx+b1交抛物线于另一点D,交y轴于点C(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出ACE面积的最大值;(4)如图2,在抛

10、物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由27(12分) “食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安

11、全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析:由题意易得当3x2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.详解:在中,60,当3x2时函数的图象位于第二象限内,且y随x的增大而增大,当x=3时,y=2,当x=2时,y=3,当3x2时,2y3,故选C点

12、睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.2、D【解析】利用抛物线开口方向得到a0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对进行判断;利用2c3和c=-3a可对进行判断;利用二次函数的性质可对进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对进行判断【详解】抛物线开口向下,a0,而抛物线的对称轴为直线x=-=1,即b=-2a,3a+b=3a-2a=a0,所以正确;2c3,而c=-3a,2-3a3,-1a-,所以正确;抛物线的顶点坐标(1,n),x=1时,二次函数值有最大值n,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物

13、线的顶点坐标(1,n),抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以正确故选D【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物

14、线与x轴没有交点3、A【解析】两边都除以3,得xy,两边都加y,得:x+y0,故选A4、C【解析】直接利用有理数的除法运算法则计算得出答案【详解】解:(-18)9=-1故选:C【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键5、B【解析】试题分析:ABCD,D=1=34,DECE,DEC=90,DCE=1809034=56故选B考点:平行线的性质6、A【解析】试题解析:A、x2x2x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意故选A7、C【解析】首先根据ADB

15、C,求出FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知DEF=FED,最后求得AED的大小【详解】解:ADBC,EFB=FED=65,由折叠的性质知,DEF=FED=65,AED=180-2FED=50,故选:C【点睛】此题考查了长方形的性质与折叠的性质此题比较简单,解题的关键是注意数形结合思想的应用8、D【解析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发

16、,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM上的点(P)重合,而选项C还原后两个点不能够重合故选D点评:本题考核立意相对较新,考核了学生的空间想象能力9、D【解析】试题解析:要使分式有意义,则1-x0,解得:x1故选D10、A【解析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x1)2+2,故选A考点:二次函数图象与几何变换11、C【解析】科学记数法就是将一个数字表示成a10的n次幂的形式,其中1|

17、a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂【详解】数据8 600用科学记数法表示为8.6103故选C【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零)12、C【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分)13、x3【解析】由题意得

18、x-30,x3.14、【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y0,化简得y=4x,sinEAB=考点:1相切两圆的性质;2勾股定理;3锐角三角函数的定义15、.【解析】由AE3EC,ADE的面积为3,可知ADC的面积为4,再根据点D为OB的中点,得到ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,),从而表示出梯形BOCA的面积关于k的等式,求解即可.【详解】如图,连接DC,AE=3EC,ADE的面积为3,CDE的面积为1.ADC的面积为4.点A在双曲线y的第一象限的那一支上,设A点

19、坐标为 (x,).OC2AB,OC=2x.点D为OB的中点,ADC的面积为梯形BOCA面积的一半,梯形BOCA的面积为8.梯形BOCA的面积=,解得.【点睛】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.16、1【解析】先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论【详解】设多边形的边数为n.因为正多边形内角和为 ,正多边形外角和为 根据题意得: 解得:n=8.这个正多边形的每个外角 则这个正多边形的每个内角是 故答案为:1.【点睛】考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.17、17【解

20、析】RtABC中,C=90,tanA= ,AC8,AB= =17,故答案为17.18、4【解析】已知弧长即已知围成的圆锥的底面半径的长是6cm,这样就求出底面圆的半径扇形的半径为5cm就是圆锥的母线长是5cm就可以根据勾股定理求出圆锥的高【详解】设底面圆的半径是r,则2r=6,r=3cm,圆锥的高=4cm故答案为4.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2)13【解析】(1)先根据同角的余角相等得到ACE=BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,EAC=B=45,即可证得AED是

21、直角三角形,再利用勾股定理即可求出DE的长【详解】(1)ACB和ECD都是等腰直角三角形AC=BC,EC=DC,ACB=ECD=90ACE=DCE-DCA,BCD=ACB-DCAACE=BCDACEBCD(SAS);(2)ACB和ECD都是等腰直角三角形BAC=B=45ACEBCDAE=BD=12,EAC=B=45EAD=EAC+BAC=90,EAD是直角三角形【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.20、(1)x19,x22;(2)x11,x2 【解析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两

22、个一元一次方程,求出方程的解即可【详解】解:(1)x27x180,(x9)(x+2)0, x90,x+20, x19,x22;(2)3x(x1)22x,3x(x1)+2(x1)0,(x1)(3x+2)0,x10,3x+20,x11,x2 【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键21、(1)CE=BD,CEBD(2)(1)中的结论仍然成立理由见解析;(3).【解析】分析:(1)线段AD绕点A逆时针旋转90得到AE,根据旋转的性质得到AD=AE,BAD=CAE,得到BADCAE,CE=BD,ACE=B,得到BCE=BCA+ACE=90,于是有CE=BD,CEBD(2)证明

23、的方法与(1)类似(3)过A作AMBC于M,ENAM于N,根据旋转的性质得到DAE=90,AD=AE,利用等角的余角相等得到NAE=ADM,易证得RtAMDRtENA,则NE=MA,由于ACB=45,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到DCF=90,由此得到RtAMDRtDCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值详解:(1)AB=AC,BAC=90,线段AD绕点A逆时针旋转90得到AE,AD=AE,BAD=CAE,BADCAE,CE=BD,ACE=B,BCE=BCA+ACE=90,BDCE;故答案为CE=B

24、D,CEBD(2)(1)中的结论仍然成立理由如下:如图,线段AD绕点A逆时针旋转90得到AE,AE=AD,DAE=90,AB=AC,BAC=90CAE=BAD,ACEABD,CE=BD,ACE=B,BCE=90,即CEBD,线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CEBD(3)如图3,过A作AMBC于M,ENAM于N,线段AD绕点A逆时针旋转90得到AEDAE=90,AD=AE,NAE=ADM,易证得RtAMDRtENA,NE=AM,ACB=45,AMC为等腰直角三角形,AM=MC,MC=NE,AMBC,ENAM,NEMC,四边形MCEN为平行四边形,AMC=90,四边形MC

25、EN为矩形,DCF=90,RtAMDRtDCF,设DC=x,ACB=45,AC=,AM=CM=1,MD=1-x,CF=-x2+x=-(x-)2+,当x=时有最大值,CF最大值为点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质22、大型标牌上端与下端之间的距离约为3.5m【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离试题解析:设AB,CD 的延长线相交于点E,

26、CBE=45,CEAE,CE=BE,CE=16.651.65=15,BE=15,而AE=AB+BE=1DAE=30,DE11.54,CD=CEDE=1511.543.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m23、(1)(2,2+2),(10,165),(,ba);(2)见解析;(3)直线PP与x轴的交点坐标(,0)【解析】(1)当P(-4,2)时,OA=2,PA=4,由旋转知,PAH=30,进而PH=PA=2,AH=PH=2,即可得出结论;当P(-5,16)时,确定出PA=10,AH=5,由旋转知,PA=PA=10,OA=OH-AH=16-5,即可得出结论;当P(a,b)时,

27、同的方法得,即可得出结论;(2)先判断出BQQ=60,进而得出PAP=PPA=60,即可得出PQQ=PAP=60,即可得出结论;(3)先确定出yPP=x+3,即可得出结论【详解】解:(1)如图1,当P(4,2)时,PAy轴,PAH=90,OA=2,PA=4,由旋转知,PA=4,PAP=60,PAH=30,在RtPAH中,PH=PA=2,AH=PH=2,OH=OA+AH=2+2,P(2,2+2),当P(5,16)时,在RtPAH中,PAH=30,PH=5,PA=10,AH=5,由旋转知,PA=PA=10,OA=OHAH=165,P(10,165),当P(a,b)时,同的方法得,P(,ba),故答

28、案为:(2,2+2),(10,165),(,ba);(2)如图2,过点Q作QBy轴于B,BQQ=60,由题意知,PAP是等边三角形,PAP=PPA=60,QBy轴,PAy轴,QBPA,PQQ=PAP=60,PQQ=60=PPA,PPQQ;(3)设yPP=kx+b,由题意知,k=,直线经过点(,6),b=3,yPP=x+3,令y=0,x=,直线PP与x轴的交点坐标(,0)【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义24、(1);(2)证明见解析;(3)【解析】试题分析:(1)由正方形的性质得出A=B

29、=EPG=90,PFEG,AB=BC=4,OEP=45,由角的互余关系证出AEP=PBC,得出APEBCP,得出对应边成比例即可求出AE的长;(2)A、P、O、E四点共圆,即可得出结论;连接OA、AC,由勾股定理求出AC=,由圆周角定理得出OAP=OEP=45,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设APE的外接圆的圆心为M,作MNAB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可试题解析:(1)四边形ABCD、四边形PEFG是正方形,

30、A=B=EPG=90,PFEG,AB=BC=4,OEP=45,AEP+APE=90,BPC+APE=90,AEP=PBC,APEBCP,即,解得:AE=,故答案为:;(2)PFEG,EOF=90,EOF+A=180,A、P、O、E四点共圆,点O一定在APE的外接圆上;连接OA、AC,如图1所示:四边形ABCD是正方形,B=90,BAC=45,AC=,A、P、O、E四点共圆,OAP=OEP=45,点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设APE的外接圆的圆心为M,作MNAB于N,如图2所示:则MNAE,ME=MP,AN=PN,MN=AE,设AP=

31、x,则BP=4x,由(1)得:APEBCP,即,解得:AE= =,x=2时,AE的最大值为1,此时MN的值最大=1=,即APE的圆心到AB边的距离的最大值为【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明APEBCP是解题的关键.25、(1)y=x2x2;(2)9;(3)Q坐标为()或(4)或(2,1)或(4+,)【解析】试题分析:把点代入抛物线,求出的值即可.先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,联立方程求出点的坐标, 最大值=,进而计算四边形EAPD面积的最大值;分两种情况进行讨论即可.试题解析:(1)在抛物线

32、上, 解得 抛物线的解析式为 (2)过点P作轴交AD于点G, 直线BE的解析式为 ADBE,设直线AD的解析式为 代入,可得 直线AD的解析式为 设则 则 当x=1时,PG的值最大,最大值为2,由 解得 或 最大值= ADBE, S四边形APDE最大=SADP最大+ (3)如图31中,当时,作于T 可得 如图32中,当时, 当时, 当时,Q3综上所述,满足条件点点Q坐标为或或或26、(1)yx2+x;(2)yx+1;(3)当x2时,最大值为;(4)存在,点D的横坐标为3或或【解析】(1)设二次函数的表达式为:ya(x+3)(x1)ax2+2ax3a,即可求解;(2)OCDF,则 即可求解;(3

33、)由SACE=SAMESCME即可求解;(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可【详解】(1)设二次函数的表达式为:ya(x+3)(x1)ax2+2ax3a,即: 解得: 故函数的表达式为: ;(2)过点D作DFx轴交于点F,过点E作y轴的平行线交直线AD于点M,OCDF,OF5OA5,故点D的坐标为(5,6),将点A、D的坐标代入一次函数表达式:ymx+n得:,解得: 即直线AD的表达式为:yx+1,(3)设点E坐标为 则点M坐标为 则 故SACE有最大值,当x2时,最大值为;(4)存在,理由:当AP为平行四边形的一条边时,如下图,设点D的坐标为 将点A向左平移2个单

34、位、向上平移4个单位到达点P的位置,同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,则点Q的坐标为 将点Q的坐标代入式并解得: 当AP为平行四边形的对角线时,如下图,设点Q坐标为点D的坐标为(m,n),AP中点的坐标为(0,2),该点也是DQ的中点,则: 即: 将点D坐标代入式并解得: 故点D的横坐标为:或或【点睛】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大27、(1)60, 90;(2)补图见解析;(3)300;(4).【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数

35、,再用“基本了解”所占的百分比乘以360,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案详解:(1)60;90.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁