《2022-2023学年广东省阳江市阳东县高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省阳江市阳东县高三最后一卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则函数的零点所在区间为( )ABCD2已知函数若函数在上零点最多,则实数的取值范围是( )ABCD3下列结论中正确的个数是( )已知函数是一次函数,若数列通项公式为,则该
2、数列是等差数列;若直线上有两个不同的点到平面的距离相等,则;在中,“”是“”的必要不充分条件;若,则的最大值为2.A1B2C3D04设复数满足,则在复平面内的对应点位于( )A第一象限B第二象限C第三象限D第四象限5已知向量,且,则( )ABC1D26某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )ABCD7已知向量,若,则实数的值为( )ABCD8将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()ABCD9已知椭圆:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为(
3、 )ABCD10若,则实数的大小关系为( )ABCD11已知函数的定义域为,则函数的定义域为( )ABCD12如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是( )A该年第一季度GDP增速由高到低排位第3的是山东省B与去年同期相比,该年第一季度的GDP总量实现了增长C该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D去年同期浙江省的GDP总量超过了4500亿元二、填空题:本题共4小题,每小题5分,共20分。13对任意正整数,函数,若,则的取值范围是_;若不等式恒成立,则的最大值为_14若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为_15甲、乙、丙、
4、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“”表示猜测某人获奖,“”表示猜测某人未获奖,而“”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_.甲获奖乙获奖丙获奖丁获奖甲的猜测乙的猜测丙的猜测丁的猜测16设O为坐标原点, ,若点B(x,y)满足,则的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四棱锥中,底面是边长为2的菱形,是的中点(1)证明:平面;(2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积18(12分)已知点为椭圆上任意一点,直线与圆 交于,两点,点为
5、椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.19(12分)已知椭圆 的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.20(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(为参数)以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值21(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1
6、)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.22(10分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查
7、分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.2、D【解析】将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.3、B【解析】根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:已知函数是一次函数,若数列的通项公式为
8、,可得为一次项系数),则该数列是等差数列,故正确;若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故错误;在中,而余弦函数在区间上单调递减,故 “”可得“”,由“”可得“”,故“”是“”的充要条件,故错误;若,则,所以,当且仅当时取等号,故正确;综上可得正确的有共2个;故选:B【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题4、C【解析】化简得到,得到答案.【详解】,故,对应点在第三象限.故选:.【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.5、A【解析】根据向量垂直的坐标表
9、示列方程,解方程求得的值.【详解】由于向量,且,所以解得.故选:A【点睛】本小题主要考查向量垂直的坐标表示,属于基础题.6、A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为 故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2
10、、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7、D【解析】由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.8、D【解析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,故选D【点睛】本题主要考查了三角函数的图象变换,以及三
11、角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题9、C【解析】根据等差数列的性质设出,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,成等差数列,设,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.10、A【解析】将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系
12、,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.11、A【解析】试题分析:由题意,得,解得,故选A考点:函数的定义域12、D【解析】根据折线图、柱形图的性质,对选项逐一判断即可.【详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共
13、2个.故C项正确;.故D项不正确.故选:D.【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】将代入求解即可;当为奇数时,则转化为,设,由单调性求得的最小值;同理,当为偶数时,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【详解】由题,解得.当为奇数时,由,得,而函数为单调递增函数,所以,所以;当为偶数时,由,得,设,单调递增,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【点睛】本题考查利用导函数求最值,考查分类讨论思想和转化思想.14、【解析】依题意得,再
14、求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解: 正三棱柱的所有棱长均为2,则,点到平面的距离为点到直线的距离所以,所以.故答案为: 【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.15、乙、丁【解析】本题首先可根据题意中的“四个人中有且只有两个人的猜测是正确的”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所猜测的结果是否冲突,最后即可得出结果.【详解】从表中可知,若甲猜测正确,则乙,丙,丁猜测错误,与题意不符,故甲猜测错误;若乙猜测正确,则依题意丙猜测无法确定正误,丁猜测错误;若丙猜测正确,则丁猜测错误;综上只有乙,丙猜测不矛盾,依题意乙,丙猜测是正
15、确的,从而得出乙,丁获奖.所以本题答案为乙、丁.【点睛】本题是一个简单的合情推理题,能否根据“四个人中有且只有两个人的猜测是正确的”将题目所给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题.16、【解析】 ,可行域如图,直线 与圆 相切时取最大值,由 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)连接与交于,连接,证明即可得证线面平行;(2)首先证明平面(只要取中点,可证平面,从而得,同理得),因此点到直线的距离即为点到平面的距离,由平面几何知识易得最大值,然后可计算体积【详解】(1)证明:连接与交
16、于,连接,因为是菱形,所以为的中点,又因为为的中点,所以,因为平面平面,所以平面(2)解:取中点,连接,因为四边形是菱形,且,所以,又,所以平面,又平面,所以同理可证:,又,所以平面,所以平面平面,又平面平面,所以点到直线的距离即为点到平面的距离,过作直线的垂线段,在所有垂线段中长度最大为,因为为的中点,故点到平面的最大距离为1,此时,为的中点,即,所以,所以【点睛】本题考查证明线面平行,考查求棱锥的体积,掌握面面垂直与线面垂直的判定与性质是解题关键18、(1)证明见解析;(2)是,理由见解析.【解析】(1)根据判别式即可证明(2)根据向量的数量积和韦达定理即可证明,需要分类讨论,【详解】解:
17、(1)当时直线方程为或,直线与椭圆相切.当时,由得,由题知,即,所以.故直线与椭圆相切.(2)设,当时,所以,即.当时,由得,则,.因为 . 所以,即.故为定值.【点睛】本题考查椭圆的简单性质,考查向量的运算,注意直线方程和椭圆方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题19、 (1) .(2) 为定值.过程见解析.【解析】分析:(1)焦距说明,用点差法可得.这样可解得,得椭圆方程;(2)若,这种特殊情形可直接求得,在时,直线方程为,设,把直线方程代入椭圆方程,后可得,然后由纺长公式计算出弦长,同时直线方程为,代入椭圆方程可得点坐标,从而计算出,最后计算即可.详解:(1)由题意可
18、知,设,代入椭圆可得:,两式相减并整理可得,即. 又因为,代入上式可得,.又,所以, 故椭圆的方程为. (2)由题意可知,当为长轴时,为短半轴,此时; 否则,可设直线的方程为,联立,消可得, 则有:, 所以设直线方程为,联立,根据对称性,不妨得,所以. 故,综上所述,为定值. 点睛:设直线与椭圆相交于两点,的中点为,则有,证明方法是点差法:即把点坐标代入椭圆方程得,两式相减,结合斜率公式可得.20、(1),(2)【解析】试题分析:利用将极坐标方程化为直角坐标方程:化简为cossin1,即为xy1再利用点到直线距离公式得:设点P的坐标为(2cos,sin),得P到直线l的距离试题解析:解:化简为
19、cossin1,则直线l的直角坐标方程为xy1设点P的坐标为(2cos,sin),得P到直线l的距离,dmax 考点:极坐标方程化为直角坐标方程,点到直线距离公式21、(1)见解析,(2)最小正整数的值为35.【解析】(1)由等差中项可知,当时,得,整理后可得,从而证明为等差数列,继而可求.(2),则可求出,令,即可求出 的取值范围,进而求出最小值.【详解】解析:(1)由题意可得,当时,当时,整理可得,是首项为1,公差为1的等差数列,.(2)由(1)可得,解得,最小正整数的值为35.【点睛】本题考查了等差中项,考查了等差数列的定义,考查了 与 的关系,考查了裂项相消求和.当已知有 与 的递推关
20、系时,常代入 进行整理.证明数列是等差数列时,一般借助数列,即后一项与前一项的差为常数.22、(1);(2).【解析】(1)由已知短轴长求出,离心率求出关系,结合,即可求解;(2)当直线的斜率都存在时,不妨设直线的方程为,直线与椭圆方程联立,利用相交弦长公式求出,斜率为,求出,得到关于的表达式,根据表达式的特点用“”判别式法求出范围,当有一斜率不存在时,另一条斜率为,根据弦长公式,求出,即可求出结论.【详解】(1)由得,又由得,则,故椭圆的方程为.(2)由(1)知,当直线的斜率都存在时,由对称性不妨设直线的方程为,由,设,则,则,由椭圆对称性可设直线的斜率为,则,.令,则,当时,当时,由得,所以,即,且.当直线的斜率其中一条不存在时,根据对称性不妨设设直线的方程为,斜率不存在,则,此时.若设的方程为,斜率不存在,则,综上可知的取值范围是.【点睛】本题考查椭圆标准方程、直线与椭圆的位置关系,注意根与系数关系、弦长公式、函数最值、椭圆性质的合理应用,意在考查逻辑推理、计算求解能力,属于难题.