2022-2023学年广西南宁市兴宁区南宁三中高考仿真卷数学试题含解析.doc

上传人:茅**** 文档编号:87797856 上传时间:2023-04-17 格式:DOC 页数:21 大小:2.23MB
返回 下载 相关 举报
2022-2023学年广西南宁市兴宁区南宁三中高考仿真卷数学试题含解析.doc_第1页
第1页 / 共21页
2022-2023学年广西南宁市兴宁区南宁三中高考仿真卷数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022-2023学年广西南宁市兴宁区南宁三中高考仿真卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西南宁市兴宁区南宁三中高考仿真卷数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数在上单调递减的充要条件是( )ABCD2复数,若复数在复平面内对应的点关于虚轴对称,则等于( )ABCD3若为虚数单位,则复数在复平面上对应的点位于( )A第一象限B第二象限C

2、第三象限D第四象限4已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD5将函数的图象分别向右平移个单位长度与向左平移(0)个单位长度,若所得到的两个图象重合,则的最小值为( )ABCD6已知正项等比数列的前项和为,且,则公比的值为()AB或CD7已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的( )条件.A充分不必要B必要不充分C充要D既不充分也不必要8在满足,的实数对中,使得成立的正整数的最大值为( )A5B6C7D99已知,都是偶函数,且在上单调递增,设函数,若,则( )A且B且C且D且10某中学2019年的高考考生人数是2016年高考考生人数的1

3、.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ).A与2016年相比,2019年不上线的人数有所增加B与2016年相比,2019年一本达线人数减少C与2016年相比,2019年二本达线人数增加了0.3倍D2016年与2019年艺体达线人数相同11已知,则( )A5BC13D12如图,平面与平面相交于,点,点,则下列叙述错误的是( )A直线与异面B过只有唯一平面与平行C过点只能作唯一平面与垂直D过一定能作一平面与垂直二、填空题:本题共4小题,每小题5分,共20分。13 “直线l1:与直线l2:平行”是“a2”的_条件

4、(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)14如图,在平面四边形中,点,是椭圆短轴的两个端点,点在椭圆上,记和的面积分别为,则_.15在中,已知,则的最小值是_16某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是_.2至3月份的收入的变化率与11至12月份的收入的变化率相同;支出最高值与支出最低值的比是6:1;第三季度平均收入为50万元;利润最高的月份是2月份三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数 .(1)若在 处导数相等,证明: ;(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.

5、18(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:一周课外读书时间/合计频数46101214244634频率0.020.030.050.060.070.120.250.171(1)根据表格中提供的数据,求,的值并估算一周课外读书时间的中位数.(2)如果读书时间按,分组,用分层抽样的方法从名学生中抽取20人.求每层应抽取的人数;若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.19(12分)已知椭圆的短轴长为,左右

6、焦点分别为,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.()求面积最大值;()证明:直线与斜率之积为定值.20(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.21(12分)2019年安庆市在大力推进城市环境、人文精神建设的过程中,居民生活垃圾分类逐渐形成意识.有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识的网络问卷调查,每位市民仅有一次参与机会,通过抽样,

7、得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图:(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布,近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P();(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:(i)得分不低于可获赠2次随机话费,得分低于则只有1次:(ii)每次赠送的随机话费和对应概率如下:赠送话费(单位:元)1020概率现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:,若,则,.22(10分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐

8、标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,令,则,故在上恒成立;结合图象可知,解得故.故选:C.【点睛】本题考查求三角函数单调区间. 求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三

9、角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.2、A【解析】先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.3、D【解析】根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化

10、简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题4、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为考点:二项式系数,二项式系数和5、B【解析】首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.6、C【解析】由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数

11、列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3) 为等比数列( )且公比为.7、B【解析】根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.8、A【解析】由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调

12、递减,则,因为,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.9、A【解析】试题分析:由题意得,若:,若:,若:,综上可知,同理可知,故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函

13、数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.10、A【解析】设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.11、C【解析】先化简复数

14、,再求,最后求即可.【详解】解:,故选:C【点睛】考查复数的运算,是基础题.12、D【解析】根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、必要不充分【解

15、析】先求解直线l1与直线l2平行的等价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a2,故“直线l1:与直线l2:平行”是“a2”的必要不充分条件故答案为:必要不充分.【点睛】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.14、【解析】依题意易得A、B、C、D四点共圆且圆心在x轴上,然后设出圆心,由圆的方程与椭圆方程联立得到B的横坐标,进一步得到D横坐标,再由计算比值即可.【详解】因为,所以A、B、C、D四点共圆,直径为,又A、C关于x轴对称,所以圆心E在x轴上,设圆心E为,则圆的方程为,联立椭圆方程消y得,解得,故

16、B的横坐标为,又B、D中点是E,所以D的横坐标为,故.故答案为:.【点睛】本题考查椭圆中的四点共圆及三角形面积之比的问题,考查学生基本计算能力及转化与化归思想,本题关键是求出B、D横坐标,是一道有区分度的压轴填空题.15、【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.16、【解析】通过图片信息直接观察,计算,找

17、出答案即可【详解】对于,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确对于,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确对于,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确对于,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是806020万元,错误故答案为【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题目三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)见解析(II)【解析】(1)由题x0,由f(x)

18、在x=x1,x2(x1x2)处导数相等,得到,得,由韦达定理得,由基本不等式得,得,由题意得,令,则,令,利用导数性质能证明(2)由得,令,利用反证法可证明证明恒成立由对任意,只有一个解,得为上的递增函数,得,令,由此可求的取值范围.【详解】(I)令,得,由韦达定理得即,得令,则,令,则,得(II)由得令,则,下面先证明恒成立若存在,使得,且当自变量充分大时,所以存在,使得,取,则与至少有两个交点,矛盾由对任意,只有一个解,得为上的递增函数,得,令,则,得【点睛】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题18、(1),中位数;(2)三层中抽取的人数分别为

19、2,5,13;【解析】(1)根据频率分布直方表的性质,即可求得,得到,再结合中位数的计算方法,即可求解.(2)由题意知用分层抽样的方法从样本中抽取20人,根据抽样比,求得在三层中抽取的人数;由知,设内被抽取的学生分别为,内被抽取的学生分别为,利用列举法得到基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】(1)由题意,可得,所以,.设一周课外读书时间的中位数为小时,则,解得,即一周课外读书时间的中位数约为小时.(2)由题意知用分层抽样的方法从样本中抽取20人,抽样比为,又因为,的频数分别为20,50,130,所以从,三层中抽取的人数分别为2,5,13.由知,在,两层中共抽取7人,设

20、内被抽取的学生分别为,内被抽取的学生分别为,若从这7人中随机抽取2人,则所有情况为,共有21种,其中2人不在同一层的情况为,共有10种.设事件为“这2人不在同一层”,由古典概型的概率计算公式,可得概率为.【点睛】本题主要考查了频率分布直方表的性质,中位数的求解,以及古典概型的概率计算等知识的综合应用,着重考查了分析问题和解答问题的能力,属于基础题.19、(1);(2)();()证明见解析.【解析】(1)由,解方程组即可得到答案;(2)()设,则,易得,注意到,利用基本不等式得到的最大值即可得到答案;()设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.【详解】(1

21、)设,由,得.将代入,得,即,由,解得,所以椭圆的标准方程为.(2)设,则,()易知为的中位线,所以,所以,又满足,所以,得,故,当且仅当,即,时取等号,所以面积最大值为.()记直线斜率为,则直线斜率为,所以直线方程为.由,得,由韦达定理得,所以,代入直线方程,得,于是,直线斜率,所以直线与斜率之积为定值.【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆中的最值及定值问题,在解椭圆与直线的位置关系的答题时,一般会用到根与系数的关系,考查学生的数学运算求解能力,是一道有一定难度的题.20、(1);(2)不存在实数,使曲线在点处的切线与轴垂直.【解析】(1)分类时,恒成立,时,分离参数为,引入新函

22、数,利用导数求得函数最值即可;(2),导出导函数,问题转化为在上有解再用导数研究的性质可得【详解】解:(1)因为当时,恒成立,所以,若,为任意实数,恒成立.若,恒成立,即当时,设,当时,则在上单调递增,当时,则在上单调递减,所以当时,取得最大值.,所以,要使时,恒成立,的取值范围为.(2)由题意,曲线为:.令,所以,设,则,当时,故在上为增函数,因此在区间上的最小值,所以,当时,所以,曲线在点处的切线与轴垂直等价于方程在上有实数解.而,即方程无实数解.故不存在实数,使曲线在点处的切线与轴垂直.【点睛】本题考查不等式恒成立,考查用导数的几何意义,由导数几何把问题进行转化是解题关键本题属于困难题2

23、1、(1)(2)详见解析【解析】(1)利用频率分布直方图平均数等于小矩形的面积乘以底边中点横坐标之和,再利用正态分布的对称性进行求解.(2)写出随机变量的所有可能取值,利用互斥事件和相互独立事件同时发生的概率计算公式,再列表得到其分布列.【详解】解:(1)从这1000人问卷调查得到的平均值为由于得分Z服从正态分布,(2)设得分不低于分的概率为p,(或由频率分布直方图知)法一:X的取值为10,20,30,40;所以X的分布列为X10203040P法二:2次随机赠送的话费及对应概率如下2次话费总和203040PX的取值为10,20,30,40;所以X的分布列为X10203040P【点睛】本题考查了

24、正态分布、离散型随机变量的分布列,属于基础题.22、(1)(为参数),;(2)【解析】分析:(1)直线的参数方程为(为参数),其中表示之间的距离,而极坐标方程可化为,从而的直角方程为.(2)设,则 ,利用在圆上得到满足的方程,最后利用韦达定理就可求出两条线段的和.详解:(1)直线的参数方程为(为参数).曲线的极坐标方程可化为.把,代入曲线的极坐标方程可得,即.(2)把直线的参数方程为(为参数)代入圆的方程可得:.曲线与直线相交于不同的两点,又,.又,.,.的取值范围是.点睛:(1)直线的参数方程有多种形式,其中一种为(为直线的倾斜角, 是参数),这样的参数方程中的参数有明确的几何意义,它表示 之间的距离.(2)直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁