《2022-2023学年福建省漳州市云霄县达标名校中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省漳州市云霄县达标名校中考五模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()Aa+b0Ba|2|CbD2如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )ABCD3某市公园的东
2、、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD4下列各数中,最小的数是 ABC0D5如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(3,1)、C(0,1),若将ABC绕点C沿顺时针方向旋转90后得到A1B1C,则点B对应点B1的坐标是()A(3,1)B(2,2)C(1,3)D(3,0)6下列运算正确的是( )ABCD7如图,P为O外一点,PA、PB分别切O于点A、B,CD切O于点E,分别交PA、PB于点C、D,若PA6,则PCD的周长为()A8B6C12D108如图,是的直径,是的弦,连接,则与的
3、数量关系为( )ABCD9下面运算正确的是()AB(2a)2=2a2Cx2+x2=x4D|a|=|a|10如图数轴的A、B、C三点所表示的数分别为a、b、c若|ab|3,|bc|5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A在A的左边B介于A、B之间C介于B、C之间D在C的右边11如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2B1:3C1:4D1:112对于命题“如果1+190,那么11”能说明它是假命题的是()A150,140B140,150C130,160D1145二、填空题:(本大题共6个小题,每
4、小题4分,共24分)13若关于x的方程的解是正数,则m的取值范围是_14不等式组的解集是_;15如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口)那么,蚂蚁从A出发到达E处的概率是_16已知一个多边形的每一个内角都是,则这个多边形是_边形.17若x,y为实数,y,则4y3x的平方根是_18计算:6=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,
5、为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?20(6分)如图,在ABC中,ACB=90,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF(1)判断直线EF与O的位置关系,并说明理由;(2)若A=30,求证:DG=DA;(3)若A=30,且图中阴影部分的面积等于2,求O的半径的长21(6分)先化简:,再从、2、3中选择一个合适的数作为a的值代入求值22(8分)“校园诗歌大赛”结束后,张老师和李老师将所
6、有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有 人,扇形统计图中“69.579.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.23(8分)如图,已知AB为O的直径,AC是O的弦,D是弧BC的中点,过点D作O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD(1)求证:A2BDF;(2)若AC3,AB5,求CE的长24(10分
7、)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F(1)求证:GBEGEF(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围(3)如图2,连接AC交GF于点Q,交EF于点P当AGQ与CEP相似,求线段AG的长 25(10分)若关于的方程无解,求的值.26(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,
8、使CAD=30,CBD=60求AB的长(精确到0.1米,参考数据:);已知本路段对校车限速为40千米小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由27(12分)已知关于x的一元二次方程x26x+(2m+1)=0有实数根求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x220,求m的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案【详解】a2,2b1 A.a+b0,故A不符合题意;B.a|2|,故B不符合题意;C.
9、b1,故C不符合题意;D.0,故D符合题意;故选D【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键2、B【解析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.3、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公
10、园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比4、A【解析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A【点睛】此题考负数的大小比较,应理解数字大的负数反而小5、B【解析】作出点A、B绕点C按顺时针方向旋转90后得到的对应点,再顺次连接可得A1B1C,即可得到点B对应点B1的坐标【详解
11、】解:如图所示,A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2)故选:B【点睛】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标6、D【解析】根据幂的乘方:底数不变,指数相乘合并同类项即可解答.【详解】解:A、B两项不是同类项,所以不能合并,故A、B错误,C、D考查幂的乘方运算,底数不变,指数相乘 ,故D正确;【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.7、C【解析】由切线长定理可求得PAPB,ACCE,BDED,则可求得答案【详解】PA、PB分别切O于点A、B,
12、CD切O于点E,PAPB6,ACEC,BDED,PC+CD+PDPC+CE+DE+PDPA+AC+PD+BDPA+PB6+612,即PCD的周长为12,故选:C【点睛】本题主要考查切线的性质,利用切线长定理求得PAPB、ACCE和BDED是解题的关键8、C【解析】首先根据圆周角定理可知B=C,再根据直径所得的圆周角是直角可得ADB=90,然后根据三角形的内角和定理可得DAB+B=90,所以得到DAB+C=90,从而得到结果.【详解】解:是的直径,ADB=90.DAB+B=90.B=C,DAB+C=90.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解
13、题的关键.9、D【解析】分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.【详解】解:A,故此选项错误;B,故此选项错误;C,,故此选项错误;D,故此选项正确.所以D选项是正确的.【点睛】灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案10、C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=1、b=1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论解析:|ab|=3,|bc|=5,b=a+3,c=b+5
14、,原点O与A、B的距离分别为1、1,a=1,b=1,b=a+3,a=1,b=1,c=b+5,c=1点O介于B、C点之间故选C点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键11、B【解析】根据中位线定理得到DEBC,DE=BC,从而判定ADEABC,然后利用相似三角形的性质求解.【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=1:4,ADE的面积:四边形BCED的面积=1:3;故选B【点睛】本题考查
15、三角形中位线定理及相似三角形的判定与性质12、D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子【详解】“如果1+190,那么11”能说明它是假命题为1145故选:D【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、m0且x-20,则有4-m 0且4-m-20,解得:m4且m2.14、9x1【解析】分别求出两个不等式的解集,再求其公共解集【详解】,解不等式,得:x-1,解不等式,得:x-9,所以不等式组的解集为:-9x-1,故答案为:-9x-1【点睛】本题考查一元一次不等式组的解法,属于
16、基础题求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了15、【解析】试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.16、十【解析】先求出每一个外角的度数,再根据边数=360外角的度数计算即可【详解】解:180144=36,36036=1,这个多边形的边数是1故答案为十【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键17、【解析】与同时成立, 故只有x24=0,即x=2,又x20,x=2,y=,4y3x=1(6)=5,4y3x的平方根是故答案:18、3【解析
17、】按照二次根式的运算法则进行运算即可.【详解】【点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得 (40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1“扩大销售量,减少库存”,x1=10应舍去,x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数每件盈利
18、=每天销售的利润是解题关键.20、(1)EF是O的切线,理由详见解析;(1)详见解析;(3)O的半径的长为1【解析】(1)连接OE,根据等腰三角形的性质得到A=AEO,B=BEF,于是得到OEG=90,即可得到结论;(1)根据含30的直角三角形的性质证明即可;(3)由AD是O的直径,得到AED=90,根据三角形的内角和得到EOD=60,求得EGO=30,根据三角形和扇形的面积公式即可得到结论【详解】解:(1)连接OE,OA=OE,A=AEO,BF=EF,B=BEF,ACB=90,A+B=90,AEO+BEF=90,OEG=90,EF是O的切线;(1)AED=90,A=30,ED=AD,A+B=
19、90,B=BEF=60,BEF+DEG=90,DEG=30,ADE+A=90,ADE=60,ADE=EGD+DEG,DGE=30,DEG=DGE,DG=DE,DG=DA;(3)AD是O的直径,AED=90,A=30,EOD=60,EGO=30,阴影部分的面积 解得:r1=4,即r=1,即O的半径的长为1【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键21、-1.【解析】根据分式的加法和除法可以化简题目中的式子,然后在、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题【详解】,当时,原式故答案为:-1.【点睛】本题考查分式
20、的化简求值,解答本题的关键是明确分式化简求值的方法22、(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.569.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.599.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.579.5所占的百分比;(2)观察可知79.599.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)10%=50(人),“89.599.5”这
21、一组人数占百分比为:(8+4)50100%=24%,所以“69.579.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为50,30%;(2)不能;由统计图知,79.589.5和89.599.5两组占参赛选手60%,而7879.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P=.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.23、(1)见解析;(2)1【解析】(1)连接AD,如图,利用圆周角定理得ADB=90,利用切线的性质得ODDF,则根据等角的余角相等得到BDF
22、=ODA,所以OAD=BDF,然后证明COD=OAD得到CAB=2BDF;(2)连接BC交OD于H,如图,利用垂径定理得到ODBC,则CH=BH,于是可判断OH为ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1【详解】(1)证明:连接AD,如图,AB为O的直径,ADB90,EF为切线,ODDF,BDFODB90,ODAODB90,BDFODA,OAOD,OADODA,OADBDF,D是弧BC的中点,CODOAD,CAB2BDF;(2)解:连接BC交OD于H,如图,D是弧BC的中点,ODBC,CHBH,OH为ABC的中位线,HD2.51.51,AB为O
23、的直径,ACB90,四边形DHCE为矩形,CEDH1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理24、(1)见解析;(2)y=4x+(0x3);(3)当AGQ与CEP相似,线段AG的长为2或4【解析】(1)先判断出BEFCEF,得出BF=CF,EF=EF,进而得出BGE=EGF,即可得出结论;(2)先判断出BEGCFE进而得出CF=,即可得出结论;(3)分两种情况,AGQCEP时,判断出BGE=60,即可求出BG;AGQCPE时,判断出EGAC,进而得出BEGBCA即可得出B
24、G,即可得出结论【详解】(1)如图1,延长FE交AB的延长线于F,点E是BC的中点,BE=CE=2,四边形ABCD是正方形,ABCD,F=CFE,在BEF和CEF中,BEFCEF,BF=CF,EF=EF,GEF=90,GF=GF,BGE=EGF,GBE=GEF=90,GBEGEF;(2)FEG=90,BEG+CEF=90,BEG+BGE=90,BGE=CEF,EBG=C=90,BEGCFE,由(1)知,BE=CE=2,AG=x,BG=4x,CF=,由(1)知,BF=CF=,由(1)知,GF=GF=y,y=GF=BG+BF=4x+当CF=4时,即:=4,x=3,(0x3),即:y关于x的函数表达
25、式为y=4x+(0x3);(3)AC是正方形ABCD的对角线,BAC=BCA=45,AGQ与CEP相似,AGQCEP,AGQ=CEP,由(2)知,CEP=BGE,AGQ=BGE,由(1)知,BGE=FGE,AGQ=BGQ=FGE,AGQ+BGQ+FGE=180,BGE=60,BEG=30,在RtBEG中,BE=2,BG=,AG=ABBG=4,AGQCPE,AQG=CEP,CEP=BGE=FGE,AQG=FGE,EGAC,BEGBCA,BG=2,AG=ABBG=2,即:当AGQ与CEP相似,线段AG的长为2或4【点睛】本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.25
26、、【解析】分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1(1)把x=0代入(a+2)x=1,a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0x=1,x无解即a=-2时,整式方程无解综上所述,当a=1或a=-2时,原方程无解故答案为a=1或a=-2点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形26、(1)24.2米(2) 超速,理由见解析【解析】(1)
27、分别在RtADC与RtBDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速【详解】解:(1)由題意得,在RtADC中,在RtBDC中,AB=ADBD=(米)(2)汽车从A到B用时2秒,速度为24.22=12.1(米/秒),12.1米/秒=43.56千米/小时,该车速度为43.56千米/小时43.56千米/小时大于40千米/小时,此校车在AB路段超速27、(1)m1;(2)3m1【解析】试题分析:(1)根据判别式的意义得到=(-6)2-1(2m+1)0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x220得到2(2m+1)+620,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围试题解析:(1)根据题意得(6)21(2m1)0, 解得m1; (2)根据题意得x1x26,x1x22m1, 而2x1x2x1x220,所以2(2m1)620, 解得m3,而m1,所以m的范围为3m1