2022-2023学年山东省泰安市泰山区上高中学中考数学最后冲刺浓缩精华卷含解析.doc

上传人:茅**** 文档编号:87797628 上传时间:2023-04-17 格式:DOC 页数:16 大小:546.50KB
返回 下载 相关 举报
2022-2023学年山东省泰安市泰山区上高中学中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共16页
2022-2023学年山东省泰安市泰山区上高中学中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2022-2023学年山东省泰安市泰山区上高中学中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省泰安市泰山区上高中学中考数学最后冲刺浓缩精华卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知边长为2的正三角形ABC顶点A

2、的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A3B4C4D622将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )ABCD3如图,直线a,b被直线c所截,若ab,1=50,3=120,则2的度数为()A80B70C60D504一个多边形的每一个外角都等于72,这个多边形是( )A正三角形B正方形C正五边形D正六边形5一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )A第一象限B第二象限C第三象限D第四象限6如图,正方形ABCD中,E,

3、F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是ABCD7若关于x的一元二次方程(k1)x2+2x2=0有两个不相等的实数根,则k的取值范围是()AkBkCk且k1Dk且k18如图,在四边形ABCD中,如果ADC=BAC,那么下列条件中不能判定ADC和BAC相似的是()ADAC=ABCBAC是BCD的平分线CAC2=BCCDD9在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和1,则点C所对应的实数是( )A1+B2+C21D2+110从 ,0, ,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD二、填空题(共7小题,每小题3分

4、,满分21分)112018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有_万人12如图,等边ABC的边长为1cm,D、E分别是AB、AC边上的点,将ADE沿直线DE折叠,点A落在点处,且点在ABC的外部,则阴影部分图形的周长为_cm. 13已知 x(x+1)x+1,则x_14为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育

5、锻炼时间的中位数与众数之和为_15如图,直线l1l2l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,FAC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为 16如图,已知ABCD,F为CD上一点,EFD=60,AEC=2CEF,若6BAE15,C的度数为整数,则C的度数为_17分解因式:a2b8ab+16b=_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,已知OA6厘米,OB8厘米点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间

6、为t(s).(1)t为何值时,APQ与AOB相似?(2)当 t为何值时,APQ的面积为8cm2?19(5分)化简(),并说明原代数式的值能否等于-120(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示滑行时间x/s0123滑行距离y/m041224(1)根据表中数据求出二次函数的表达式现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式21(10分)已知,如图所示直线y=k

7、x+2(k0)与反比例函数y=(m0)分别交于点P,与y轴、x轴分别交于点A和点B,且cosABO=,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式(2)若AC是PCB的中线,求反比例函数的关系式22(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且PBD是以BD为直角边的直角三角形,求点P的坐

8、标23(12分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DEAM于点E求证:ADEMAB;求DE的长24(14分)如图,AB是O的直径,BAC=90,四边形EBOC是平行四边形,EB交O于点D,连接CD并延长交AB的延长线于点F(1)求证:CF是O的切线;(2)若F=30,EB=6,求图中阴影部分的面积(结果保留根号和)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE的长,最后求得DE的长即可详解:如图,当点E旋转至y轴上时DE最小;ABC是等边三角形,D为BC的中点,ADB

9、CAB=BC=2AD=ABsinB=,正六边形的边长等于其半径,正六边形的边长为2,OE=OE=2点A的坐标为(0,6)OA=6DE=OA-AD-OE=4-故选B点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形2、A【解析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A3、B【解析】直接利用平行线的性质得出4的度数,再利用对顶角的性质得出答案【详解】解:ab,1=50,4=50,3=120,2+4=120,2=120-50=70故选B【点睛】此题主

10、要考查了平行线的性质,正确得出4的度数是解题关键4、C【解析】任何多边形的外角和是360,用360除以一个外角度数即可求得多边形的边数【详解】36072=1,则多边形的边数是1故选C【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容5、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k0,又满足kb0,由此即可得出答案【详解】y随x的增大而减小,一次函数y=kx+b单调递减,k0,kb0,直线经过第二、一、四象限,不经过第三象限,故选C【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k0,k、b是常数)的图象和性质是解题的关

11、键.6、C【解析】如图作,FNAD,交AB于N,交BE于M设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FNAD,交AB于N,交BE于M四边形ABCD是正方形,ABCD,FNAD,四边形ANFD是平行四边形,D=90,四边形ANFD是矩形,AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,AN=BN,MNAE,BM=ME,MN=a,FM=a,AEFM,故选C【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题

12、型7、C【解析】根据题意得k-10且=2-4(k-1)(-2)0,解得:k且k1故选C【点睛】本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac,关键是熟练掌握:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根8、C【解析】结合图形,逐项进行分析即可.【详解】在ADC和BAC中,ADC=BAC,如果ADCBAC,需满足的条件有:DAC=ABC或AC是BCD的平分线;,故选C【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.9、D【解析】设点C所对应的实数是x根据中心对称的性质,对称点到对称中心的距离相等,则有

13、,解得.故选D.10、C【解析】根据有理数的定义可找出在从,0,6这5个数中只有0、6为有理数,再根据概率公式即可求出抽到有理数的概率【详解】在,0,6这5个数中有理数只有0、6这3个数,抽到有理数的概率是,故选C【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得详解:出境游东南亚地区的游客约有700(116%15%11%13%)=70045%=1(万)故答案为1点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之

14、和为1,利用样本估计总体思想的运用12、3【解析】由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【详解】ADE与ADE关于直线DE对称,AD=AD,AE=AE,C阴影=BC+AD+AE+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.故答案为3.【点睛】由图形轴对称可以得到对应的边相等、角相等.13、1或-1【解析】方程可化为:,或,或.故答案为1或-1.14、17【解析】8是出现次数最多的,众数是8,这组数据从小到大的顺序排列,处于中间位置的两个数都是9,中位数是9,所以中位数与众数之和为8+9=17.故答案为17小时.15、【解析】试题解析:AH=2,

15、HB=1,AB=AH+BH=3,l1l2l3,考点:平行线分线段成比例16、36或37【解析】分析:先过E作EGAB,根据平行线的性质可得AEF=BAE+DFE,再设CEF=x,则AEC=2x,根据6BAE15,即可得到63x-6015,解得22x25,进而得到C的度数详解:如图,过E作EGAB,ABCD,GECD,BAE=AEG,DFE=GEF,AEF=BAE+DFE,设CEF=x,则AEC=2x,x+2x=BAE+60,BAE=3x-60,又6BAE15,63x-6015,解得22x25,又DFE是CEF的外角,C的度数为整数,C=60-23=37或C=60-24=36,故答案为:36或3

16、7点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等17、b(a4)1【解析】先提公因式,再用完全平方公式进行因式分解【详解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1【点睛】本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键三、解答题(共7小题,满分69分)18、(1)t秒;(1)t5(s)【解析】(1)利用勾股定理列式求出 AB,再表示出 AP、AQ,然后分APQ 和AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;(1)过点 P 作 PCOA 于 C,利用OAB

17、 的正弦求出 PC,然后根据三角形的面积公式列出方程求解即可【详解】解:(1)点 A(0,6),B(8,0),AO6,BO8,AB 10,点P的速度是每秒1个单位,点 Q 的速度是每秒1个单位,AQt,AP10t,APQ是直角时,APQAOB,即,解得 t6,舍去;AQP 是直角时,AQPAOB,即,解得 t,综上所述,t秒时,APQ 与AOB相似;(1)如图,过点 P 作 PCOA 于点C,则 PCAPsinOAB(10t)(10t),APQ的面积t(10t)8, 整理,得:t110t+100,解得:t5+6(舍去),或 t5,故当 t5(s)时,APQ的面积为 8cm1【点睛】本题主要考查

18、了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键19、见解析【解析】先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为1,则=1,截至求得x的值,再根据分式有意义的条件即可作出判断【详解】原式=,若原代数式的值为1,则=1,解得:x=0,因为x=0时,原式没有意义,所以原代数式的值不能等于1【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键20、(1)20s;(2)【解析】(1)利用待定系数法求出函数解析式,再求出y840时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可【详解】解:(1)该抛物线过点(0

19、,0),设抛物线解析式为yax2+bx,将(1,4)、(2,12)代入,得:,解得:,所以抛物线的解析式为y2x2+2x, 当y840时,2x2+2x840,解得:x20(负值舍去),即他需要20s才能到达终点; (2)y2x2+2x2(x+)2, 向左平移2个单位,再向下平移5个单位后函数解析式为y2(x+2+)252(x+)2【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律21、(2)y=2x+2;(2)y=【解析】(2)由cosABO,可得到tanABO2,从而可得到k2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P

20、的坐标代入反比例函数的解析式可求得m的值【详解】(2)cosABO=,tanABO=2又OA=2OB=2B(-2,0)代入y=kx+2得k=2一次函数的解析式为y=2x+2(2)当x=0时,y=2,A(0,2)当y=0时,2x+2=0,解得:x=2B(2,0)AC是PCB的中线,P(2,4)m=xy=24=4,反例函数的解析式为y=【点睛】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数ktanABO是解题的关键22、(1)B(0,1);(1)y=0.5x11x+1;(3)P1(1,0)和P1(7.15,0);【解析】(1)根据y=0.5x+

21、m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1得出可设二次函数y=ax1+bx+c=a(x1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可【详解】(1)y=x+1交x轴于点A(4,0),0=(4)+m,m=1,与y轴交于点B,x=0,y=1B点坐标为:(0,1),(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1可设二次函数y=a(x1)1把B(0,1)代入得:a=0.5二次函数的解析式:y=0.5x11x+1;(3

22、)()当B为直角顶点时,过B作BP1AD交x轴于P1点由RtAOBRtBOP1,得:OP1=1,P1(1,0),()作P1DBD,连接BP1,将y=0.5x+1与y=0.5x11x+1联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时DAP1=BAO,BOA=ADP1,ABOAP1D, ,解得:AP1=11.15,则OP1=11.154=7.15,故P1点坐标为(7.15,0);点P的坐标为:P1(1,0)和P1(7.15,0) 【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解23

23、、(1)证明见解析;(2). 【解析】试题分析:利用矩形角相等的性质证明DAEAMB.试题解析:(1)证明:四边形ABCD是矩形,ADBC,DAE=AMB,又DEA=B=90,DAEAMB.(2)由(1)知DAEAMB,DE:AD=AB:AM,M是边BC的中点,BC=6,BM=3,又AB=4,B=90,AM=5,DE:6=4:5,DE=24、(1)证明见解析;(2)93【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出AOC=OBE,COD=ODB,结合OB=OD得出DOC=AOC,从而证明出COD和COA全等,从而的得出答案;(2)、首先根据题意得出OBD为等边三角形,根据等边三角

24、形的性质得出EC=ED=BO=DB,根据RtAOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD四边形OBEC是平行四边形,OCBE,AOC=OBE,COD=ODB,OB=OD,OBD=ODB,DOC=AOC,在COD和COA中,CODCOA,CDO=CAO=90,CFOD, CF是O的切线(2)F=30,ODF=90,DOF=AOC=COD=60,OD=OB,OBD是等边三角形,4=60,4=F+1,1=2=30,ECOB,E=1804=120,3=180E2=30,EC=ED=BO=DB,EB=6,OB=ODOA=3, 在RtAOC中,OAC=90,OA=3,AOC=60,AC=OAtan60=3, S阴=2SAOCS扇形OAD=233=93

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁