2022-2023学年山东省潍坊市峡山经济开发区中考数学考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:87797457 上传时间:2023-04-17 格式:DOC 页数:17 大小:815.50KB
返回 下载 相关 举报
2022-2023学年山东省潍坊市峡山经济开发区中考数学考试模拟冲刺卷含解析.doc_第1页
第1页 / 共17页
2022-2023学年山东省潍坊市峡山经济开发区中考数学考试模拟冲刺卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年山东省潍坊市峡山经济开发区中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省潍坊市峡山经济开发区中考数学考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是()A1BC2D2已知a,b为两个连续的整数,且ab,则a+b的值为()A7B8C9D103下列命题正确的是( )A内错角相等 B1是无理数C1的立方根是1 D两角及一边对应相等的两

2、个三角形全等4据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.91010B3.9109C0.391011D391095化简(a2)a5所得的结果是( )Aa7Ba7Ca10Da106已知ABC,D是AC上一点,尺规在AB上确定一点E,使ADEABC,则符合要求的作图痕迹是()ABCD7104的结果是( )A7 B7 C14 D138长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A米 B米C米 D米9由一些大小相同的小正方体组成的几

3、何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()ABCD10罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大如图是对某球员罚球训练时命中情况的统计:下面三个推断:当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1其中合理的是( )ABCD11如图,已知ABC的三个顶点均在格点上,

4、则cosA的值为( )ABCD12有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,6二、填空题:(本大题共6个小题,每小题4分,共24分)13甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_S乙2(填“”“”或“=”)14如图,正ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得到A1B1O,则翻滚2017次后AB中点M经过的路径长为_15若3,a,4,5的众数是4,则这

5、组数据的平均数是_16一个n边形的内角和为1080,则n=_.17若不等式组的解集是1x1,则a_,b_18如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周所得圆柱的主视图(正视图)的周长是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,ACB和ECD都是等腰直角三角形,ACBECD90,D为AB边上一点求证:ACEBCD;若AD5,BD12,求DE的长20(6分)如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得ABCCDE(保留作图痕迹不写作法)21(6分)“扬州漆器”名扬天下,某网店专门销

6、售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.22(8分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,(1)求证:直线为的切线;(2)求证:;(3)若,求的长23(8分)已知化简;如果、是方程的两个根,求的值24(10分)如图甲,直线y=x+

7、3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)25(10分)作图题:在ABC内找一点P,使它到ABC的两边的距离相等,并且到点A、C的距离也相等(写出作法,保留作图痕迹)26(12分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F求证:O

8、EOF27(12分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC的顶点均在格点上(1)画出将ABC绕点B按逆时针方向旋转90后所得到的A1BC1;(2)画出将ABC向右平移6个单位后得到的A2B2C2;(3)在(1)中,求在旋转过程中ABC扫过的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故=故选:B【点睛】本题考查了正多边形的性质,正确作出

9、辅助线是关键2、A【解析】9111+a ,解不等式得:x不等式组的解集为: 1+ax不等式组的解集是1x1,.1+a=-1, =1,解得:a=-2,b=-3故答案为: -2, -3.【点睛】本题主要考查解含参数的不等式组.18、1【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2)13【解析】(1)先根据同角的余角相等得到ACE=BCD,再结合等腰直角三角形的性质即可证得结

10、论;(2)根据全等三角形的性质可得AE=BD,EAC=B=45,即可证得AED是直角三角形,再利用勾股定理即可求出DE的长【详解】(1)ACB和ECD都是等腰直角三角形AC=BC,EC=DC,ACB=ECD=90ACE=DCE-DCA,BCD=ACB-DCAACE=BCDACEBCD(SAS);(2)ACB和ECD都是等腰直角三角形BAC=B=45ACEBCDAE=BD=12,EAC=B=45EAD=EAC+BAC=90,EAD是直角三角形【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.20、详见解析【解析】利用尺规过D作DEAC,交AC于E,即可使得AB

11、CCDE【详解】解:过D作DEAC,如图所示,CDE即为所求:【点睛】本题主要考查了尺规作图,相似三角形的判定,解决问题的关键是掌握相似三角形的判定方法21、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-

12、10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【点睛】此题主要

13、考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点22、(1)证明见解析;(2)证明见解析;(3)1【解析】(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA

14、为EF的一半,等量代换即可得证【详解】(1)连接OB,PB是O的切线,PBO=90OA=OB,BAPO于D,AD=BD,POA=POB又PO=PO,PAOPBO PAO=PBO=90,直线PA为O的切线(2)由(1)可知,=90,即,是直径,是半径,整理得;(3)是中点,是中点,是的中位线,是直角三角形,在中,则,、是半径,在中,由勾股定理得:,即,解得:或(舍去),【点睛】本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键23、 (1) ;(2)-4.【解析】(1)先通分,再进行同分母的减法运算,然后约分得到原式 (2)

15、利用根与系数的关系得到 然后利用整体代入的方法计算【详解】解:(1)(2)、是方程,【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时, 也考查了分式的加减法24、(1)y=x24x+3;(2)(2,)或(2,7)或(2,1+2)或(2,12);(3)E点坐标为(,)时,CBE的面积最大【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,

16、交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时

17、,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+1|=2,解得t=1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大考点:二次函

18、数综合题25、见解析【解析】先作出ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点【详解】以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;连接AF,则直线AF即为ABC的角平分线;连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;连接FH交BF于点M,则M点即为所求【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键26、见解析【解析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得AEOCFO,由全等三角形的对应

19、边相等,可得OE=OF【详解】证明:四边形ABCD是平行四边形,OA=OC,ABDC,EAO=FCO,在AEO和CFO中,AEOCFO(ASA),OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.27、(1)(1)如图所示见解析;(3)4+1【解析】(1)根据旋转的性质得出对应点位置,即可画出图形;(1)利用平移的性质得出对应点位置,进而得出图形;(3)根据ABC扫过的面积等于扇形BCC1的面积与A1BC1的面积和,列式进行计算即可【详解】(1)如图所示,A1BC1即为所求;(1)如图所示,A1B1C1即为所求;(3)由题可得,ABC扫过的面积=4+1【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁