《2022-2023学年山东省枣庄市峄城区底阁镇重点达标名校中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省枣庄市峄城区底阁镇重点达标名校中考数学适应性模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )Aa+b0Ba-b0C2如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AAC=CDBOM=BMCA=ACDDA=BOD3一元二次方程x2-2x=0的解是( )Ax1=0,x2=2Bx1=1,x2=2Cx1=0,x2=-
2、2Dx1=1,x2=-24一个六边形的六个内角都是120(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是()A13B14C15D165下列各数中,最小的数是( )A0BCD6计算(5)(3)的结果等于()A8 B8 C2 D27关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-8如图,右侧立体图形的俯视图是( )A B C D9下列方程中,没有实数根的是()Ax22x=0Bx22x1=0Cx22x+1 =0Dx22x+2=010如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直
3、角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S2018的值为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是_12如图,一艘海轮位于灯塔P的北偏东方向60,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_海里13如图,PC是O的直径,PA切O于点P,AO交O于点B;连接BC,若,则_.14如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(ACAB
4、),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化已知AE5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_ m15在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_16如图,正方形ABCD中,E为AB的中点,AFDE于点O,那么等于( )A;B;C;D三、解答题(共8题,共72分)17(8分)已知:如图1,抛物线
5、的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性AMB恒为等腰三角形,我们规定:当AMB为直角三角形时,就称AMB为该抛物线的“完美三角形”(1)如图2,求出抛物线的“完美三角形”斜边AB的长;抛物线与的“完美三角形”的斜边长的数量关系是 ;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值18(8分)如图所示,在中,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分19(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠
6、政策,使农民收入大幅度增加某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为w元求w与x之间的函数关系式该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?20(8分)如图,已知三角形ABC的边AB是0的切线,切点为BAC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分ACE;(2)若BE=
7、3,CE=4,求O的半径.21(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,称为“三角形数”;把1,4,9,16,25,称为“正方形数”. 将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数136101521a正方形数1491625b49五边形数151222C5170(1)按照规律,表格中a=_,b=_,c=_(2)观察表中规律,第n个“正方形数”是_;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是_22(10分)如图,AB是O的直径,D是O上一点,点E是AC的中点,过点A作O的切线交BD的延长线于点F
8、连接AE并延长交BF于点C(1)求证:AB=BC;(2)如果AB=5,tanFAC=,求FC的长23(12分)先化简,再求值:,其中x=24甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜如果指针落在分割线上,则需要重新转动转盘请问这个游戏对甲、乙双方公平吗?说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运
9、算,可得答案【详解】解:由数轴,得b-1,0a1A、a+b0,故A错误;B、a-b0,故B错误;C、0,故C符合题意;D、a21b2,故D错误;故选C【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b-1,0a1是解题关键,又利用了有理数的运算2、D【解析】根据垂径定理判断即可【详解】连接DA直径AB弦CD,垂足为M,CM=MD,CAB=DAB2DAB=BOD,CAD=BOD故选D【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键3、A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1故
10、选A考点:解一元二次方程-因式分解法4、C【解析】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I因为六边形ABCDEF的六个角都是120,所以六边形ABCDEF的每一个外角的度数都是60所以都是等边三角形所以 所以六边形的周长为3+1+4+2+2+3=15;故选C5、D【解析】根据实数大小比较法则判断即可【详解】01,故选D【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键6、C【解析】分析:减去一个数,等于加上这个数的相反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考
11、查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)7、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小8、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图9、D【解析】分别计算各
12、方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可【详解】A、=(2)2410=40,方程有两个不相等的实数根,所以A选项错误;B、=(2)241(1)=80,方程有两个不相等的实数根,所以B选项错误;C、=(2)2411=0,方程有两个相等的实数根,所以C选项错误;D、=(2)2412=40,方程没有实数根,所以D选项正确故选D10、A【解析】根据等腰直角三角形的性质可得出2S2S1,根据数的变化找出变化规律“Sn()n2”,依此规律即可得出结论【详解】如图所示,正方形ABCD的边长为2,CDE为等腰直角三角形,DE2+CE2CD2,DECE,2S2S1观察,发现规律:S1224
13、,S2S12,S2S21,S4S2,Sn()n2当n2018时,S2018()20182()3故选A【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn()n2”二、填空题(本大题共6个小题,每小题3分,共18分)11、S=1n-1【解析】观察可得,n=2时,S=1;n=3时,S=1+(3-2)1=12;n=4时,S=1+(4-2)1=18;所以,S与n的关系是:S=1+(n-2)1=1n-1故答案为S=1n-1【点睛】本题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的12、1【解析】分析:首先由方
14、向角的定义及已知条件得出NPA=60,AP=4海里,ABP=90,再由ABNP,根据平行线的性质得出A=NPA=60然后解RtABP,得出AB=APcosA=1海里详解:如图,由题意可知NPA=60,AP=4海里,ABP=90ABNP,A=NPA=60在RtABP中,ABP=90,A=60,AP=4海里,AB=APcosA=4cos60=4=1海里故答案为1点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键13、26【解析】根据圆周角定理得到AOP=2C=64,根据切线的性质定理得到APO=90,根据直角三角形两锐角互余计算即可【详解
15、】由圆周角定理得:AOP=2C=64PC是O的直径,PA切O于点P,APO=90,A=90AOP=9064=26故答案为:26【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键14、7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB,最小值3m,AB=3m,影长最大时,木杆与光线垂直,即AC=5m,BC=4,又可得CABCFE, AE=5m, 解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.15、(672,2019)【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算201
16、8被3除,就可以得到棋子的位置.详解:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,20183=6722,走完第2018步,为第673个循环组的第2步,所处位置的横坐标为672,纵坐标为6723+3=2019,棋子所处位置的坐标是(672,2019)故答案为:(672,2019)点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.16、D【解析】利用DAO与DEA相似,对应边成比例即可求解【详解】DOA=90,DAE=90,ADE是公共角
17、,DAO=DEADAODEA即AE=AD故选D三、解答题(共8题,共72分)17、(1)AB=2;相等;(2)a=;(3), 【解析】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角三角形,设出点B的坐标为(n,n),根据二次函数得出n的值,然后得出AB的值,因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn4m1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.(3)根据的最大值为
18、-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.【详解】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角三角形,ABx轴,易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,(舍去),抛物线的“完美三角形”的斜边相等;(2)抛物线与抛物线的形状相同,抛物线与抛物线的“完美三角形”全等,抛物线的“完美三角形”斜边的长为4,抛物线的“完美三角形”斜边的长为4,B点坐标为(2,2)或(2,-2),(3) 的最大值为-1, , ,抛物线的“完美三角形”斜边长为n,抛物线的“完
19、美三角形”斜边长为n,B点坐标为,代入抛物线,得, (不合题意舍去),18、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90,3B=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、
20、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键19、 (1);(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元【解析】(1)根据销售额=销售量销售价单x,列出函数关系式(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值【详解】解:(1)由题意得:,w与x的函数关系式为:(2),20,当x=30时,w有最大值w最大值为2答:
21、该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元(3)当w=150时,可得方程2(x30)2+2=150,解得x1=25,x2=3328,x2=3不符合题意,应舍去答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元20、(1)证明见解析;(2). 【解析】试题分析:(1)证明:如图1,连接OB,由AB是0的切线,得到OBAB,由于CE丄AB,的OBCE,于是得到1=3,根据等腰三角形的性质得到1=2,通过等量代换得到结果(2)如图2,连接BD通过DBCCBE,得到比例式,列方程可得结果(1)证明:如图1,连接OB,AB是0的切线,OBAB,CE丄AB,OBCE
22、,1=3,OB=OC,1=2,2=3,CB平分ACE;(2)如图2,连接BD,CE丄AB,E=90,BC=5,CD是O的直径,DBC=90,E=DBC,DBCCBE,BC2=CDCE,CD=,OC=,O的半径=考点:切线的性质21、1 2 3 n2 n2 +x-n 【解析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案详解:(1)前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,第n个“三角形数”是, a=782=178
23、2=1前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52,第n个“正方形数”是n2, b=62=2前4个“正方形数”分别是:1=,5=,12=,22=,第n个“五边形数”是n(3n1)2n(3n1)2, c=3(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,第n个“五边形数”是n2+x-n点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解探寻规律要认真观察、仔细思考,善用联想来解决这类问题
24、22、 (1)见解析;(2).【解析】分析:(1)由AB是直径可得BEAC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;(2)由FAC+CAB=90,CAB+ABE=90,可得FAC=ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长. 作CHAF于H,可证RtACHRtBAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.AB是O的直径,AEB=90,BEAC,而点E为AC的中点,BE垂直平分AC,BA=BC;(2)解:AF为切线,AFAB,FAC+CAB=90,CAB+ABE=90
25、,FAC=ABE,tanABE=FAC=,在RtABE中,tanABE=,设AE=x,则BE=2x,AB=x,即x=5,解得x=,AC=2AE=2,BE=2作CHAF于H,如图,HAC=ABE,RtACHRtBAC,=,即=,HC=2,AH=4,HCAB,=,即=,解得FH=在RtFHC中,FC=点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到RtACHRtBAC是解(2)的关键.23、1+ 【解析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】解:原式 当时,原式=【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.24、见解析【解析】解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为、乙获胜的概率为,这个游戏对甲、乙双方不公平【点睛】考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比