2022-2023学年广西钦州市第二中学高考冲刺数学模拟试题含解析.doc

上传人:茅**** 文档编号:87797311 上传时间:2023-04-17 格式:DOC 页数:19 大小:2.14MB
返回 下载 相关 举报
2022-2023学年广西钦州市第二中学高考冲刺数学模拟试题含解析.doc_第1页
第1页 / 共19页
2022-2023学年广西钦州市第二中学高考冲刺数学模拟试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年广西钦州市第二中学高考冲刺数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西钦州市第二中学高考冲刺数学模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示,则该几何体中的最长棱长为( )ABCD2已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,且,则此三棱锥外接球表面积的最小值为( )ABCD3已知向量,满足,在上投影为,则的最小值为( )ABCD4 “”是“”的

2、( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5已知命题,则是( )A,B,.C,D,.6一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)( )A3.132B3.137C3.142D3.1477已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方向平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.ABCD8的展开式中,含项的系数为( )ABCD9若函数在时取得极值,则( )ABCD10

3、已知 若在定义域上恒成立,则的取值范围是( )ABCD11设为的两个零点,且的最小值为1,则( )ABCD12已知函数,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知圆,直线与圆交于两点,若,则弦的长度的最大值为_.14根据如图的算法,输出的结果是_.15已知随机变量,且,则_16已知以x2y =0为渐近线的双曲线经过点,则该双曲线的标准方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.18(12分)己知函数.(1)当时,求证:;(2)若函数,

4、求证:函数存在极小值.19(12分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.20(12分)已知函数(1)当时,解关于x的不等式;(2)当时,若对任意实数,都成立,求实数的取值范围21(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.22(10分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

5、要求的。1、C【解析】根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,过S作,连接BD ,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC 平面ABC,过S作,连接BD,则 ,所以 , ,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.2、B【解析】根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即

6、为三棱锥,且长方体的长、宽、高分别为,此三棱锥的外接球即为长方体的外接球,且球半径为,三棱锥外接球表面积为,当且仅当,时,三棱锥外接球的表面积取得最小值为故选B【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题3、B【解析】根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即 又 本题正确选项:

7、【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.4、B【解析】或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.5、B【解析】根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.6、B【解析】结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:.故选:B【点睛】本

8、题考查随机模拟的概念和几何概型,属于基础题7、D【解析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重合,故正确;,故,函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.8、B【解析】在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题9、D【解析】对函数求导,根据函数在时取得

9、极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.10、C【解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.当时,由,得,解得,此时;当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,则,此时;当时,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段

10、函数基本性质的应用,考查分类讨论思想的应用,属于中等题.11、A【解析】先化简已知得,再根据题意得出f(x)的最小值正周期T为12,再求出的值【详解】由题得,设x1,x2为f(x)=2sin(x)(0)的两个零点,且的最小值为1,=1,解得T=2;=2,解得=故选A【点睛】本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题12、A【解析】根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设为的中点,根据弦长公式,只需最小,在中,根据余弦定

11、理将表示出来,由,得到,结合弦长公式得到,求出点的轨迹方程,即可求解.【详解】设为的中点,在中,在中,得,即,.,得.所以,.故答案为:.【点睛】本题考查直线与圆的位置关系、相交弦长的最值,解题的关键求出点的轨迹方程,考查计算求解能力,属于中档题.14、55【解析】根据该For语句的功能,可得,可得结果【详解】根据该For语句的功能,可得则故答案为:55【点睛】本题考查For语句的功能,属基础题.15、0.1【解析】根据原则,可得,简单计算,可得结果.【详解】由题可知:随机变量,则期望为所以故答案为:【点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.16、【解析】设双曲线方

12、程为,代入点,计算得到答案.【详解】双曲线渐近线为,则设双曲线方程为:,代入点,则.故双曲线方程为:.故答案为:.【点睛】本题考查了根据渐近线求双曲线,设双曲线方程为是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,故综上,实数的取值范围是(2)设,则,令,在单调递增,也就是在单调递增

13、,所以.当即时,不符合;当即时,符合当即时,根据零点存在定理,使,有时,在单调递减,时,在单调递增,成立,故只需即可,有,得,符合综上得,实数的最小值为【点睛】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于难题.18、(1)证明见解析(2)证明见解析【解析】(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知; ,易知当时,;当时,函数单调递增,而,又,由零点存在定理得,使得,使得,有从而得证.【详解】(1)依题意,因为,且,故,故函数在上单调递减,故.(2)依题意,令,

14、则;而,可知当时,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,即函数单调递增,即单调递增;故当时,故函数在上单调递减,在上单调递增,故当时,函数有极小值.【点睛】本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.19、(1)(2)证明见解析【解析】(1)在上有解,设,求导根据函数的单调性得到最值,得到答案.(2)证明,只需证,记,求导得到函数的单调性,得到函数的最小值,得到证明.【详解】(1)由题可得,在上有解,则,令,当时,单调递增;当时,单调递减.所以是的最大值点,所以.(2)由,所以,要证明,只需证,即证.记在上单调递增,且

15、,当时,单调递减;当时,单调递增.所以是的最小值点,则,故.【点睛】本题考查了函数的切线问题,证明不等式,意在考查学生的综合应用能力和转化能力.20、(1)(2)【解析】(1)当时,利用含有一个绝对值不等式的解法,求得不等式的解集.(2)对分成和两类,利用零点分段法去绝对值,将表示为分段函数的形式,求得的最小值,进而求得的取值范围.【详解】(1)当时,由得由得解:,得当时,关于的不等式的解集为(2)当时,所以在上是减函数,在是增函数,所以,由题设得,解得.当时,同理求得.综上所述,的取值范围为.【点睛】本小题主要考查含有一个绝对值不等式的求法,考查利用零点分段法解含有两个绝对值的不等式,属于中

16、档题.21、(1)见解析;(2)【解析】(1)设为中点,连结,先证明,可证得,假设不为线段的中点,可得平面,这与矛盾,即得证;(2)以为原点,以分别为轴建立空间直角坐标系,分别求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【详解】(1)设为中点,连结.,又 平面,平面,.又分别为中点,又,.假设不为线段的中点,则与是平面内内的相交直线,从而平面,这与矛盾,所以为线段的中点.(2)以为原点,由条件面面,以分别为轴建立空间直角坐标系,则,.设平面的法向量为所以取,则,.同法可求得平面的法向量为,由图知二面角为锐二面角,二面角的余弦值为.【点睛】本题考查了立体几何与空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.22、直线与圆C相切【解析】首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系【详解】直线为参数),转换为直角坐标方程为圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离直线与圆C相切【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁