《2022-2023学年广东省广州市南沙区第一中学高三第二次调研数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省广州市南沙区第一中学高三第二次调研数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数,在区间上任取三个实数,均存在以,为边长的三角形,则实数的取值范围是( )ABCD2为了加强“精
2、准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( )A24B36C48D643复数(i是虚数单位)在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限4自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要
3、分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A12种B24种C36种D72种5某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共( )种ABCD6复数的虚部为( )ABC2D7已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( )ABCD8定义:表示不等式的解集中的整数解之和.若,则实数的取值范围是ABCD9将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A14种B15种C16种D18种10洛书,古称龟书,是阴阳五行术数之
4、源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD11在原点附近的部分图象大概是( )ABCD12等差数列中,已知,且,则数列的前项和中最小的是( )A或BCD二、填空题:本题共4小题,每小题5分,共20分。13九章算术中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数
5、、猪价,则_,_.14若椭圆:的一个焦点坐标为,则的长轴长为_15用数字、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_个.16秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为_. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinq.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.18(12分)在四棱
6、锥中,底面是平行四边形,底面(1)证明:;(2)求二面角的正弦值19(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416
7、.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.20(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望21(12分)已知函数.()若,求曲线在处的切线方程;()当时,要使恒成立,求实数的取
8、值范围.22(10分)如图,在棱长为的正方形中,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角(1)证明:;(2)求与面所成角的正弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【详解】的定义域为,所以在上递减,在上递增,在处取得极小值也即是最小值,所以在区间上的最大值为.要使在区间上任取三个实数,均存在以,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【
9、点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.2、B【解析】根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.3、B【解析】利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.4、C【解析】先将4名医生分成3组,其
10、中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.5、B【解析】间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解
11、题的关键,属于中档题.6、D【解析】根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.7、D【解析】先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.8、D【解析】由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和
12、一定大于6.当时,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示. 若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.9、D【解析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有27=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“
13、黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题10、A【解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题11、A【解析】分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正
14、确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,则函数为奇函数,排除C、D选项;当时,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.12、C【解析】设公差为,则由题意可得,解得,可得.令,可得当时,当时,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,则,解得,.令,可得,故当时,当时,故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.二、填空题:本题共4小题,每小题5分,
15、共20分。13、10 900 【解析】由题意列出方程组,求解即可.【详解】由题意可得,解得.故答案为10 900【点睛】本题主要考查二元一次方程组的解法,用消元法来求解即可,属于基础题型.14、【解析】由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或 由表示的是椭圆,则,所以,则椭圆方程为 所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对 的两个值进行取舍.15、【解析】对首位数的奇偶进行分类讨论,利用分步乘法计数原理和分类加法计数原理可得出结果.【详解】若首位为奇数,则第一、三、五
16、个数位上的数都是奇数,其余三个数位上的数为偶数,此时,符号条件的位自然数个数为个;若首位数为偶数,则首位数不能为,可排在第三或第五个数位上,第二、四、六个数位上的数为奇数,此时,符合条件的位自然数个数为个.综上所述,符合条件的位自然数个数为个.故答案为:.【点睛】本题考查数的排列问题,要注意首位数字的分类讨论,考查分步乘法计数和分类加法计数原理的应用,考查计算能力,属于中等题.16、1055【解析】模拟执行程序框图中的程序,即可求得结果.【详解】模拟执行程序如下:,满足,满足,满足,满足,不满足,输出.故答案为:1055.【点睛】本题考查程序框图的模拟执行,属基础题.三、解答题:共70分。解答
17、应写出文字说明、证明过程或演算步骤。17、(1)(2)(2,)【解析】(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)曲线C的极坐标方程为,则,即.(2),联立可得,(舍)或,公共点(,3),化为极坐标(2,)【点睛】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极坐标和直角坐标的转化公式是求解的关键,交点问题一般是统一一种坐标形式求解后再进行转化,侧重考查数学运算的核心素养.18、(1)见解析(2)【解析】(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面
18、的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:, ,底面,平面, ; (2)以为坐标原点建立如图所示的空间直角坐标系, 设平面的法向量为,由可得:,令,则, 设平面的法向量为,由可得:,令,则, 设二面角的平面角为,由图可知为钝角,则, ,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.19、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出
19、列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;.所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列
20、和期望,考查计算求解能力,属于基础题.20、(1) (2)(i)(ii)分布列见解析,【解析】(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【详解】(1)甲从五所高校中任选2所,共有共10种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因
21、为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为(ii),因此,即的分布列为0123因此数学期望为【点睛】本题考查了事件独立性的应用和随机变量的分布列和期望,考查了学生综合分析,概念理解,实际应用,数学运算的能力,属于中档题.21、()()【解析】()求函数的导函数,即可求得切线的斜率,则切线方程得解;()构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【详解】()当时,则.所以.又,故所求切线方程为,即.()依题意,得,即恒成立.令,则.当时,因为,不合题意.当时,令,得,显然.令,得或;令,得.所以函数的单调递增区间是,单调递减区间是.当时,所以,
22、只需,所以,所以实数的取值范围为.【点睛】本题考查利用导数的几何意义求切线方程,以及利用导数研究恒成立问题,属综合中档题.22、(1)证明见详解;(2)【解析】(1)在折叠前的正方形ABCD中,作出对角线AC,BD,由正方形性质知,又/,则于点H,则由直二面角可知面 ,故.又,则面,故命题得证;(2)作出线面角,在直角三角形中求解该角的正弦值.【详解】解:(1)证明:在正方形中,连结交于因为/,故可得,即又旋转不改变上述垂直关系,且平面,面,又面,所以(2)因为为直二面角,故平面平面,又其交线为,且平面,故可得底面,连结,则即为与面所成角,连结交于,在中,在中,所以与面所成角的正弦值为【点睛】本题考查了线面垂直的证明与性质,利用定义求线面角,属于中档题.