《2022-2023学年安徽省安庆市潜山二中高考冲刺模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省安庆市潜山二中高考冲刺模拟数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五
2、个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD2设函数,则使得成立的的取值范围是( )ABCD3将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是( )ABCD4已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)5已知函数,则下列结论中正确的是函数的最小正周期为;函数的图象是轴对称图形;函数的极大值为;函数的最小值为ABCD6已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD7在中,点D是线段BC上任意一点,则(
3、)AB-2CD28已知函数,若对,且,使得,则实数的取值范围是( )ABCD9已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为( )ABCD10如图,矩形ABCD中,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:对满足题意的任意的的位置,;对满足题意的任意的的位置,则( ) A命题和命题都成立B命题和命题都不成立C命题成立,命题不成立D命题不成立,命题成立11设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,则椭圆的离心率为( )AB
4、CD12若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于( )ABC2或D2或二、填空题:本题共4小题,每小题5分,共20分。13已知,若的展开式中的系数比x的系数大30,则_14设是公差不为0的等差数列的前n项和,且,则_.15已知函数f(x)=axlnxbx(a,bR)在点(e,f(e)处的切线方程为y=3xe,则a+b=_.16在的二项展开式中,所有项的系数之和为1024,则展开式常数项的值等于_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,()若,求的取值范围;()若,对,都有不等式恒成立,求的取值范围18(12分)在以为顶点的五面
5、体中,底面为菱形,二面角为直二面角.()证明:;()求二面角的余弦值.19(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.20(12分)已知数列an满足条件,且an+2(1)n(an1)+2an+1,nN*()求数列an的通项公式;()设bn,Sn为数列bn的前n项和,求证:Sn21(12分)已知x,y,z均为正数(1)若xy1,证明:|x+z|y+z|4xyz;(2)若,求2xy2yz2xz的最小值22(10分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式
6、;(2)求的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题2、B【解析】由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知
7、:定义域为,为偶函数,当时,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.3、D【解析】由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,函数.在上,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的
8、值域,属于中档题4、D【解析】原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a2,令t,则f(x)a记g(t)当t2时,g(t)2ln(t)(t)单调递减,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有两个不等于2的不等根则,记h(t)(t2且t2),则h(t)令(t),则(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,则h(t)在(2,2)上单调递增,在(2,+)上单调递减由,可得,即a2实数a的取值范围是(2,2)故选:D【点睛】此题考查方程的根与函数零点问题,关键在于
9、等价转化,将问题转化为通过导函数讨论函数单调性解决问题.5、D【解析】因为,所以不正确;因为,所以,所以,所以函数的图象是轴对称图形,正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可当时,且,令,得,可知函数在处取得极大值为,正确;因为,所以,所以函数的最小值为,正确故选D6、B【解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.
10、故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.7、A【解析】设,用表示出,求出的值即可得出答案.【详解】设由,.故选:A【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.8、D【解析】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,故在区间上单调递减;当时,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本
11、题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.9、D【解析】根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a丨AF2丨丨AF1丨(1)p,利用双曲线的离心率公式求得e【详解】直线F2A的直线方程为:ykx,F1(0,),F2(0,),代入抛物线C:x22py方程,整理得:x22pkx+p20,4k2p24p20,解得:k1,A(p,),设双曲线方程为:1,丨AF1丨p,丨AF2丨p,2a丨AF2丨丨AF1丨( 1)p,2cp,离心率e1,故选:D【点睛】本题考查抛物线及双曲线的方程及简单性质,考
12、查转化思想,考查计算能力,属于中档题10、A【解析】作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】如图所示,过作平面,垂足为,连接,作,连接.由图可知,所以,所以正确.由于,所以与所成角,所以,所以正确.综上所述,都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题11、C【解析】根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几
13、何关系,构造出关系,得到离心率.属于中档题.12、C【解析】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用二项展开式的通项公式,二项式系数的性质,求得的值【详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或本题正确结果:【点睛】本题主要考查二项式
14、定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题14、18【解析】将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【详解】因为,所以.故填:.【点睛】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.15、0【解析】由题意,列方程组可求,即求.【详解】在点处的切线方程为,代入得.又.联立解得:.故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.16、【解析】利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常数项.【详解】因为的二项展开式中,所有项的系数之和为4n=1024,
15、 n=5,故的展开式的通项公式为Tr+1=C35-r,令,解得r=4,可得常数项为T5=C3=15,故填15.【点睛】本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();().【解析】()由题意不等式化为,利用分类讨论法去掉绝对值求出不等式的解集即可;()由题意把问题转化为,分别求出和,列出不等式求解即可【详解】()由题意知,若,则不等式化为,解得;若,则不等式化为,解得,即不等式无解;若,则不等式化为,解得,综上所述,的取值范围是;()由题意知,要使得不等式恒成立,只需,当时,因为,所
16、以当时,即,解得,结合,所以的取值范围是.【点睛】本题考查了绝对值不等式的求解问题,含有绝对值的不等式恒成立应用问题,以及绝对值三角不等式的应用,考查了分类讨论思想,是中档题含有绝对值的不等式恒成立应用问题,关键是等价转化为最值问题,再通过绝对值三角不等式求解最值,从而建立不等关系,求出参数范围.18、()见解析()【解析】()连接交于点,取中点,连结,证明平面得到答案.()分别以为轴建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为,计算夹角得到答案.【详解】()连接交于点,取中点,连结因为为菱形,所以.因为,所以. 因为二面角为直二面角,所以平面平面,且平面平面,所以平面所以 因
17、为所以是平行四边形,所以. 所以,所以,所以平面,又平面,所以. ()由()可知两两垂直,分别以为轴建立如图所示的空间直角坐标系. 设 设平面的法向量为,由,取.平面的法向量为 . 所以二面角余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.19、(1)见解析(2)【解析】(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.
18、又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、()()证明见解析【解析】()由an+2(1)n(an1)+2an+1,对分奇偶讨论,即可得;()由()得,用错位相减法求出,运用分析法证明即可.【详解】(),当为奇数时,又由,得,当为偶数时,又由a23,得,;
19、()由(1)得,则-可得:,若证明Sn,则需要证明,又,即证明,即证,又显然成立,故Sn得证.【点睛】本题主要考查了由递推公式求通项公式,错位相减法求前项和,分析法证明不等式,考查了分类讨论的思想,考查了学生的运算求解与逻辑推理能力.21、(1)证明见解析;(2)最小值为1【解析】(1)利用基本不等式可得 , 再根据0xy1时, 即可证明|x+z|y+z|4xyz.(2)由, 得,然后利用基本不等式即可得到xy+yz+xz3,从而求出2xy2yz2xz的最小值.【详解】(1)证明:x,y,z均为正数,|x+z|y+z|(x+z)(y+z),当且仅当xyz时取等号又0xy1,|x+z|y+z|4xyz;(2),即,当且仅当xyz1时取等号,xy+yz+xz3,2xy2yz2xz2xy+yz+xz1,2xy2yz2xz的最小值为1【点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题22、(1)(2)当时,;当时,.【解析】(1)利用数列与的关系,求得;(2)由(1)可得:,算出公比,利用等比数列的前项和公式求出.【详解】(1)当时,当时,因为适合上式,所以.(2)由(1)得,设等比数列的公比为,则,解得,当时,当时,.【点睛】本题主要考查数列与的关系、等比数列的通项公式、前项和公式等基础知识,考查运算求解能力.