《2022-2023学年广西壮族自治区贵港市覃塘区中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西壮族自治区贵港市覃塘区中考数学全真模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()ABCD2下面的统计图反映了我市20112016年气温变
2、化情况,下列说法不合理的是()A20112014年最高温度呈上升趋势B2014年出现了这6年的最高温度C20112015年的温差成下降趋势D2016年的温差最大3如图,在RtABC中,ACB=90,AC=BC=1,将绕点A逆时针旋转30后得到RtADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )ABC-D4下列关于x的方程一定有实数解的是( )ABCD5尺规作图要求:、过直线外一点作这条直线的垂线;、作线段的垂直平分线;、过直线上一点作这条直线的垂线;、作角的平分线如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A,B,C,D,6如图是二次函数的图象,有下面四个结论:;,其中正
3、确的结论是 ABCD7将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )ABCD8如图,以正方形ABCD的边CD为边向正方形ABCD外作等边CDE,AC与BE交于点F,则AFE的度数是()A135B120C60D459某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A80(1+x)2=100B100(1x)2=80C80(1+2x)=100D80(1+x2)=10010等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x212x+k=0的两个根,则k的
4、值是()A27B36C27或36D18二、填空题(本大题共6个小题,每小题3分,共18分)11如图,利用图形面积的不同表示方法,能够得到的代数恒等式是_(写出一个即可)12如图,在ABCD中,AC与BD交于点M,点F在AD上,AF6cm,BF12cm,FBMCBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动点P运动到F点时停止运动,点Q也同时停止运动当点P运动_秒时,以点P、Q、E、F为顶点的四边形是平行四边形13下面是“利用直角三角形作矩形”尺规作图的过程已知:如图1,在RtABC中,ABC=90求作:矩形A
5、BCD小明的作法如下:如图2,(1)分别以点A、C为圆心,大于AC同样长为半径作弧,两弧交于点E、F;(2)作直线EF,直线EF交AC于点O;(3)作射线BO,在BO上截取OD,使得OD=OB;(4)连接AD,CD四边形ABCD就是所求作的矩形老师说,“小明的作法正确”请回答,小明作图的依据是:_.14将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若ABE20,则DBC为_度15如图,ABC中,AB6,AC4,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF,则线段EF的长为_16九章算术是中国传统数学最重要的著作,奠定了中国传统数学的基本框架它的代数成就
6、主要包括开方术、正负术和方程术其中,方程术是九章算术最高的数学成就九章算术中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为_三、解答题(共8题,共72分)17(8分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算
7、表(培训学时均为40),请你根据提供的信息,计算出a,b的值学员培训时段培训学时培训总费用小明普通时段206000元高峰时段5节假日时段15小华普通时段305400元高峰时段2节假日时段8(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元求y与x之间的函数关系式,并确定自变量x的取值范围;小陈如何选择培训时段,才能使得本次培训的总费用最低?18(8分)如图,已知ABC中,AB=AC=5,cosA=求底边BC的长19(8分)如图,O直径AB和弦CD相交于点E,AE2,EB6
8、,DEB30,求弦CD长20(8分)如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3)(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=3上,PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由21(8分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写
9、出的每一个角的大小都等于旋转角. 22(10分)如图,在ABC中,ABAC,AE是BAC的平分线,ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F(1)求证:AE为O的切线;(2)当BC=4,AC=6时,求O的半径;(3)在(2)的条件下,求线段BG的长23(12分)在某小学“演讲大赛”选拔赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W表示)或“通过”(用字母P表示)的结论(1)请用树状图表示出三位评委给小选手琪琪的所有可能的结论;(2)对于小选手琪琪,只有甲、乙两位评委给出相同结论的概率是多少?(3
10、)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?24小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C)他们各自在这三项活动中任选一个,每项活动被选中的可能性相同(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C2、C【解析】利用折线统计图结合相应数据,分别分析得出符合题意
11、的答案【详解】A选项:年最高温度呈上升趋势,正确;B选项:2014年出现了这6年的最高温度,正确;C选项:年的温差成下降趋势,错误;D选项:2016年的温差最大,正确;故选C【点睛】考查了折线统计图,利用折线统计图获取正确信息是解题关键3、A【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到RtADERtACB,于是S阴影部分=SADE+S扇形ABD-SABC=S扇形ABD【详解】ACB=90,AC=BC=1,AB=,S扇形ABD=,又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,S阴影部分=SADE+S扇形ABDSABC=S扇形
12、ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.4、A【解析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得【详解】Ax2-mx-1=0中=m2+40,一定有两个不相等的实数根,符合题意;Bax=3中当a=0时,方程无解,不符合题意;C由可解得不等式组无解,不符合题意;D有增根x=1,此方程无解,不符合题意;故选A【点睛】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根5、D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上
13、一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案【详解】、过直线外一点作这条直线的垂线,观察可知图符合;、作线段的垂直平分线,观察可知图符合;、过直线上一点作这条直线的垂线,观察可知图符合;、作角的平分线,观察可知图符合,所以正确的配对是:,故选D【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键6、D【解析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故正确.时,由图像
14、可知此时,即,故正确.由对称轴,可得,所以错误,故错误;当时,由图像可知此时,即,将中变形为,代入可得,故正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。7、A【解析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A8、B【解析】易得ABF与ADF全等,AFD=AFB,因此只要求出AFB的度数即可【详解】四边形ABCD是正方形,AB=AD,BAF=DAF,ABFADF,AFD=AFB,CB=CE,CBE=CEB,BCE=BCD+DCE=90+
15、60=150,CBE=15,ACB=45,AFB=ACB+CBE=60AFE=120故选B【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化9、A【解析】利用增长后的量=增长前的量(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A【点睛】本题考查了一元二次方程的应用(增长率问题
16、)解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程10、B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由=0可求出k的值,再求出方程的两个根进行判断即可试题解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-333+k=0解得:k=37将k=37代入原方程,得:x3
17、-33x+37=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(3)当3为底时,则其他两边相等,即=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意故k的值为3故选B考点:3等腰三角形的性质;3一元二次方程的解二、填空题(本大题共6个小题,每小题3分,共18分)11、(a+b)2=a2+2ab+b2【解析】完全平方公式的几何背景,即乘法公式的几何验证此类题型可从整体和部分两个方面分析问题本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形
18、的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:, 【点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.12、3或1【解析】由四边形ABCD是平行四边形得出:ADBC,AD=BC,ADB=CBD,又由FBM=CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果【详解】解:四边形ABCD是平行四边形,ADBC,AD=BC,ADB=CBD,FBM=CBM,FBD=FDB,FB=FD=12cm,AF=6cm,AD=18
19、cm,点E是BC的中点,CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1故答案为3或1【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识注意掌握分类讨论思想的应用是解此题的关键13、到线段两端点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个角为90的平行四边形为矩形【解析】先利用作法判定OA=OC,OD=OB,则根据平行四边形的判定方法判断四边
20、形ABCD为平行四边形,然后根据矩形的判定方法判断四边形ABCD为矩形【详解】解:由作法得EF垂直平分AC,则OA=OC,而OD=OB,所以四边形ABCD为平行四边形,而ABC=90,所以四边形ABCD为矩形故答案为到线段两段点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个内角为90的平行四边形为矩形【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作14、1【解析】解:根据翻折的性质可知,ABE
21、=ABE,DBC=DBC又ABE+ABE+DBC+DBC=180,ABE+DBC=90又ABE=20,DBC=1故答案为1点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出ABE=ABE,DBC=DBC是解题的关键15、1【解析】在AGF和ACF中,AGFACF,AG=AC=4,GF=CF,则BG=ABAG=64=2.又BE=CE,EF是BCG的中位线,EF=BG=1.故答案是:1.16、【解析】试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.考点:二元一次方程组的应用三、解答题(共8题,共72分)17、
22、(1)120,180;(2)y=-60x+7200,0x;x=时,y有最小值,此时y最小=-60+7200=6400(元)【解析】(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解; (2)根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围; 根据一次函数的性质结合自变量的取值范围即可求解【详解】(1)由题意,得,解得,故a,b的值分别是120,180;(2)由题意,得y=120x+180(40-x),化简得y=-60x+7200,普通时段的培训学时不会超过其他两个时段总学时的,x(40-x),解得x
23、,又x0,0x;y=-60x+7200,k=-600,y随x的增大而减小,x取最大值时,y有最小值,0x;x=时,y有最小值,此时y最小=-60+7200=6400(元)【点睛】本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键18、【解析】过点B作BDAC,在ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BDAC,垂足为点D,在RtABD中,,,AB=5,AD=ABcosA=5=3,BD=4,AC=5,DC=2,BC=.【点睛】本题考查了锐角的三角函数和勾股定理的运用.19、【解析】试题分析:过O作OF垂直
24、于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OAAE求出OE的长,在直角三角形OEF中,利用30所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长试题解析:过O作OFCD,交CD于点F,连接OD,F为CD的中点,即CF=DF,AE=2,EB=6,AB=AE+EB=2+6=8,OA=4,OE=OAAE=42=2,在RtOEF中,DEB=30,OF=OE=1,在RtODF中,OF=1,OD=4,根据勾股定理得:DF=,则CD=2DF=2考点:垂径定理;勾股定理20
25、、(1)y=x2+2x+3(2)2h4(3)(1,4)或(0,3)【解析】(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在OBC内(包括OBC的边界)时h的取值范围.(3)设P(m,m2+2m+3),过P作MNx轴,交直线x=3于M,
26、过B作BNMN,通过证明BNPPMQ求解即可.【详解】(1)把点B(3,0),点C(0,3)代入抛物线y=x2+bx+c中得:,解得:,抛物线的解析式为:y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,即抛物线的对称轴是:x=1,设原抛物线的顶点为D,点B(3,0),点C(0,3)易得BC的解析式为:y=x+3,当x=1时,y=2,如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=(x1)2+2=x2+2x+1,h=31=2,当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=(x1)2+0=x2+2x1,h=3+1=4,h的取值范围
27、是2h4;(3)设P(m,m2+2m+3),如图2,PQB是等腰直角三角形,且PQ=PB,过P作MNx轴,交直线x=3于M,过B作BNMN,易得BNPPMQ,BN=PM,即m2+2m+3=m+3,解得:m1=0(图3)或m2=1,P(1,4)或(0,3)【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明BNPPMQ.21、(1)证明见解析;(2).【解析】(1)连接AF、AC,易证EAC=DA
28、F,再证明EACDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得DAG、BAE都是旋转角,在四边形AEMB中,BAE+EMB=180,FMC+EMB=180,可得FMC=BAE,同理可得DAG=CNF,由此即可解答.【详解】(1)证明:连接,正方形旋转至正方形,在和中, ,(2).DAG、BAE、FMC、CNF;由旋转的性质可得DAG、BAE都是旋转角,在四边形AEMB中,BAE+EMB=180,FMC+EMB=180,可得FMC=BAE,同理可得DAG=CNF,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明EACDAF是解决问题的关键.22、(1
29、)证明见解析;(2);(3)1. 【解析】(1)连接OM,如图1,先证明OMBC,再根据等腰三角形的性质判断AEBC,则OMAE,然后根据切线的判定定理得到AE为O的切线;(2)设O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明AOMABE,则利用相似比得到,然后解关于r的方程即可;(3)作OHBE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1【详解】解:(1)证明:连接OM,如图1,BM是ABC的平分线,OBM=CBM,OB=OM,OBM=OMB,CBM=OMB,OMBC,AB=AC,AE是BAC的
30、平分线,AEBC,OMAE,AE为O的切线;(2)解:设O的半径为r,AB=AC=6,AE是BAC的平分线,BE=CE=BC=2,OMBE,AOMABE,即,解得r=,即设O的半径为;(3)解:作OHBE于H,如图,OMEM,MEBE,四边形OHEM为矩形,HE=OM=,BH=BEHE=2=,OHBG,BH=HG=,BG=2BH=123、(1)见解析;(2);(3).【解析】(1)根据列树状图的步骤和题意分析所有等可能的出现结果,即可画出图形;(2)根据(1)求出甲、乙两位评委给出相同结论的情况数,再根据概率公式即可求出答案;(3)根据(1)即可求出琪琪进入复赛的概率【详解】(1)画树状图如下
31、:(2)共有8种等可能结果,只有甲、乙两位评委给出相同结论的有2种可能,只有甲、乙两位评委给出相同结论的概率P=;(3)共有8种等可能结果,三位评委中至少有两位给出“通过”结论的有4种可能,乐乐进入复赛的概率P=【点睛】此题考查了列树状图,掌握列树状图的步骤,找出三位评委给出相同结论的情况数是本题的关键,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P=24、(1);(2).【解析】(1)利用概率公式直接计算即可;(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案【详解】(1)小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,小明选择去郊游的概率=;(2)列表得: ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,所以小明和小亮的选择结果相同的概率=【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比