2022-2023学年吉林省吉林市舒兰市重点达标名校中考数学考前最后一卷含解析.doc

上传人:茅**** 文档编号:87797148 上传时间:2023-04-17 格式:DOC 页数:20 大小:1.10MB
返回 下载 相关 举报
2022-2023学年吉林省吉林市舒兰市重点达标名校中考数学考前最后一卷含解析.doc_第1页
第1页 / 共20页
2022-2023学年吉林省吉林市舒兰市重点达标名校中考数学考前最后一卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022-2023学年吉林省吉林市舒兰市重点达标名校中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省吉林市舒兰市重点达标名校中考数学考前最后一卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若函数与y=2x4的图象的交点坐标为(a,b),则的值是()A4B2C1D22如图,一艘海轮位于灯塔P的南偏东45方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30方向上的B处,这时,B处与灯塔P的距离为()A60 n mileB60 n mileC30 n mileD30 n mile3计算的正确结果是()AB-C1D14已知反比例函数,下列结论不正确的是()A图象必经过点(1,2)By随x的增大而增大C图象在第二、四象限内D若,则5若关于,的

3、二元一次方程组的解也是二元一次方程的解,则的值为ABCD6有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A方差B中位数C众数D平均数7如图,点E是矩形ABCD的边AD的中点,且BEAC于点F,则下列结论中错误的是()AAF=CFBDCF=DFCC图中与AEF相似的三角形共有5个DtanCAD=8不等式组的解集在数轴上表示为( )ABCD9哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A BC D10下列图案是轴对称图形的是()ABCD11如图是几何体的三视图

4、,该几何体是( )A圆锥B圆柱C三棱柱D三棱锥12在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,是白球的概率为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13在反比例函数图象的每一支上,y随x的增大而_用“增大”或“减小”填空14如图,ABC中,AB6,AC4,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF,则线段EF的长为_15若a,b互为相反数,则a2b2=_16若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是_17关于的一元二次方程有两个相等的实数根,则的值等于_18如

5、图,点A在反比例函数y=(x0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45,在楼顶C测得塔顶A的仰角3652已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE(参考数据:sin36520.60,tan36520.75)20(6分)先化简,再求值:,其中x满足x22x2=0.21(6分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B

6、,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点E(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由22(8分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个

7、点大致位于直线AB上,后7个点大致位于直线CD上 年龄组x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)该市男学生的平均身高从 岁开始增加特别迅速(2)求直线AB所对应的函数表达式(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?23(8分)如图,ABCD的对角线AC,BD相交于点OE,F是AC上的两点,并且AE=CF,连接DE,BF(1)求证:DOEBOF;(2)若

8、BD=EF,连接DE,BF判断四边形EBFD的形状,并说明理由24(10分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3)(1)求抛物线L的顶点坐标和A点坐标(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m0)是抛物线L2上的一点,是否存在点P,使得PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由25(10分)解方程:.26(12分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,DE交A

9、C于点E,且AADE求证:DE是O的切线;若AD16,DE10,求BC的长27(12分)计算:(1)42tan60+ 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可【详解】解方程组,把代入得:=2x4,整理得:x2+2x+1=0,解得:x=1,y=2,交点坐标是(1,2),a=1,b=2,=11=2,故选B【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值2、B【解析】如图,作PEAB于E在RtPAE中,PAE=45

10、,PA=60n mile,PE=AE=60=n mile,在RtPBE中,B=30,PB=2PE=n mile故选B3、D【解析】根据有理数加法的运算方法,求出算式的正确结果是多少即可【详解】原式 故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:同号相加,取相同符号,并把绝对值相加绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1一个数同1相加,仍得这个数4、B【解析】试题分析:根据反比例函数y=的性质,当k0时,在每一个象限内,函数值y随自变量x的增大而减小;当k0时,在每一个象限内,函数值y随

11、自变量x增大而增大,即可作出判断试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2); B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误; C、命题正确; D、命题正确故选B考点:反比例函数的性质5、B【解析】将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值【详解】解:,得:,即,将代入得:,即,将,代入得:,解得:故选:【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值6、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动

12、越大,数据越不稳定;反之,方差越小,数据越稳定故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差7、D【解析】由 又ADBC,所以 故A正确,不符合题意;过D作DMBE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由BAEADC,得到CD与AD的大小关系,根据正切函数可求tanCAD的值,故D错误,符合题意【详解】A.ADBC,AEFCBF, ,故A正确,不符合题意;B.

13、 过D作DMBE交AC于N,DEBM,BEDM,四边形BMDE是平行四边形, BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DF=DC,DCF=DFC,故B正确,不符合题意;C. 图中与AEF相似的三角形有ACD,BAF,CBF,CAB,ABE共有5个,故C正确,不符合题意;D. 设AD=a,AB=b,由BAEADC,有 tanCAD 故D错误,符合题意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.8、A【解析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】解不等式得,x1;解不等式

14、得,x2;不等式组的解集为:x2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.9、D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得故选D考点:由实际问题抽象出二元一次方程组10、C【解析】解:A此图形不是轴对称图形,不合题意;B此图形不是轴对称图形,不合题意;C此图形是轴对称图形,符合题意;D此图形不是轴对称图形,不合题意故选C11、C【解析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案详解:几何体的主视图和左视图都是长方形

15、,故该几何体是一个柱体,又俯视图是一个三角形,故该几何体是一个三棱柱,故选C点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定12、D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意 :从袋中任意摸出一个球,是白球的概率为=.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A

16、的概率P(A)=.二、填空题:(本大题共6个小题,每小题4分,共24分)13、减小【解析】根据反比例函数的性质,依据比例系数k的符号即可确定【详解】k=20,y随x的增大而减小故答案是:减小【点睛】本题考查了反比例函数的性质,反比例函数y=(k0)的图象是双曲线,当k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大14、1【解析】在AGF和ACF中,AGFACF,AG=AC=4,GF=CF,则BG=ABAG=64=2.又BE=CE,EF是BCG的中位线,EF=BG=1.故答案是:1.15、1

17、【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】a,b互为相反数,a+b=1,a2b2=(a+b)(ab)=1,故答案为1【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键16、8【解析】解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.17、【解析】分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.详解:由题意得:= , ,即a(a-1)=1, a-1=,故答案为-3.点睛:本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac:当0, 方程有两个不相等的实

18、数根;当0, 方程没有实数根;当=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.18、1.【解析】根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长【详解】解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AEx轴于点EPAO=OEA=90,POA+AOE=90,AOE+OAE=90,POA=OAE,POAOAE,=,即=,解得:m=1或m=1(舍去),点A的坐标为(1,3),OA=,正方形OABC的面积=OA2=1故答案为1【点睛】本题考查了反比例函数图象点的坐标特征、正方形

19、的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、52【解析】根据楼高和山高可求出EF,继而得出AF,在RtAFC中表示出CF,在RtABD中表示出BD,根据CF=BD可建立方程,解出即可【详解】如图,过点C作CFAB于点F. 设塔高AE=x,由题意得,EF=BECD=5627=29m,AF=AE+EF=(x+29)m,在RtAFC中,ACF=3652,AF=(x+29)m,则,在RtABD中,ADB=45,AB=x+56,则BD=AB=x+56,CF=BD,解得:x=52,答:

20、该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.20、 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整体代入计算可得详解:原式= = =,x2-2x-2=0,x2=2x+2=2(x+1),则原式=点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则21、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用二次函数图象上点的坐标特征可得出点A、

21、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得

22、出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的坐标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:(1);(2)与x的函数关系式为,S存

23、在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标22、(1)11;(2)y3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右【解析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值

24、,把带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB所对应的函数表达式图象经过点则,解得即直线AB所对应的函数表达式:(3)设直线CD所对应的函数表达式为:,得,即直线CD所对应的函数表达式为:把代入得即该市18岁男生年龄组的平均身高大约是174cm左右【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.23、(2)证明见解析;(2)四边形EBFD是矩形理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是

25、矩形即可证明;【解答】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,AE=CF,OE=OF,在DEO和BOF中,DOEBOF(2)结论:四边形EBFD是矩形理由:OD=OB,OE=OF,四边形EBFD是平行四边形,BD=EF,四边形EBFD是矩形点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型24、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x2-x+3, ,y=x2-4x+3, .【解析】(1)将点B和点C代入求出抛物线L即可求解.(2)将抛物线L化顶点式求出顶点再根据关

26、于原点对称求出即可求解.(3)将使得PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.【详解】(1)将点B(-3,0),C(0,3)代入抛物线得:,解得,则抛物线.抛物线与x轴交于点A, ,A (-1,0),抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).(2)抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1)抛物线L1的顶点与抛物线L的顶点关于原点对称,对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得PAC为等腰直角三角形,作出所有点P的可能性.是等腰直角三角形,求得.,同理得,由题意知抛物线并将点代入得:.【点睛】本题主要考查抛

27、物线综合题,讨论出P点的所有可能性是解题关键.25、 【解析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.详解:去分母,得 去括号,得 移项,得 合并同类项,得 系数化为1,得经检验,原方程的解为点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.26、(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出ADB=90,根据直角三角形斜边上中线性质求出DE=BE,推出EDB=EBD,ODB=OBD,即可求出ODE=90,根据切线的判定推出即可(2)首先证明AC=2DE=20,在RtADC中,DC=12,设BD=x,在RtB

28、DC中,BC2=x2+122,在RtABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题【详解】(1)证明:连结OD,ACB=90,A+B=90,又OD=OB,B=BDO,ADE=A,ADE+BDO=90,ODE=90DE是O的切线;(2)连结CD,ADE=A,AE=DEBC是O的直径,ACB=90EC是O的切线DE=ECAE=EC,又DE=10,AC=2DE=20,在RtADC中,DC=设BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2202,x2+122=(x+16)2202,解得x=9,BC=.【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.27、1【解析】首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案解:原式=1“点睛”此题主要考查了实数运算,正确化简各数是解题关键,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁