《2022-2023学年浙江省温州市民办重点达标名校中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省温州市民办重点达标名校中考数学全真模拟试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列运算,结果正确的是()Am2+m2=m4B2m2nmn=4mC(3mn2)2=6m2n4D(m+2)2=m2+42设0k2,关于x的一次函数y=(k-2)x+2,当1x2时,y的最小值是()A2k-2 Bk-1 Ck Dk+13为
2、了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是 A180个,160个B170个,160个C170个,180个D160个,200个4小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时
3、间为15分钟其中正确的个数是()A1个B2个C3个D4个5式子有意义的x的取值范围是( )A且x1Bx1CD且x16下列实数中是无理数的是()ABCD7如图所示,将含有30角的三角板的直角顶点放在相互平行的两条直线其中一条上,若1=35,则2的度数为()A10B20C25D308某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D519某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,1老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”如果令其中i1,2,
4、1;j1,2,1则a1,1a1,2+a2,1a2,2+a3,1a3,2+a1,1a1,2表示的实际意义是()A同意第1号或者第2号同学当选的人数B同时同意第1号和第2号同学当选的人数C不同意第1号或者第2号同学当选的人数D不同意第1号和第2号同学当选的人数10如图,已知ABCD,1=115,2=65,则C等于()A40B45C50D60二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当ABM是等腰三角形时,M点的坐标为_12计算3结果等于_13如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,则
5、_1421世纪纳米技术将被广泛应用纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_米15如图,已知,第一象限内的点A在反比例函数y的图象上,第四象限内的点B在反比例函数y的图象上且OAOB,OAB60,则k的值为_16下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要_根火柴.17如图,已知正方形ABCD中,MAN=45,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_MN=BM+DNCMN的周长等于正方形ABCD的边长的两倍;EF1=BE1+DF1;点A到MN的距离等于正方形的边长AEN、AF
6、M都为等腰直角三角形SAMN=1SAEFS正方形ABCD:SAMN=1AB:MN设AB=a,MN=b,则11三、解答题(共7小题,满分69分)18(10分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?19(5分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲
7、、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖若某单位想要买5个水瓶和n(n10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买)20(8分)解不等式组: ,并写出它的所有整数解21(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲50乙60(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的
8、总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?22(10分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B求抛物线的解析式;判断ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若SOPA=2SOQA,试求出点P的坐标23(12分)先化简,再求值:,其中满足24(14分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角树杆旁有一座与地面垂直的
9、铁塔,测得米,塔高米在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、在同一条直线上,点、也在同一条直线上求这棵大树没有折断前的高度(结果精确到,参考数据:,)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案【详解】A. m2+m2=2m2,故此选项错误;B. 2m2nmn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解
10、题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.2、A【解析】先根据0k1判断出k-1的符号,进而判断出函数的增减性,根据1x1即可得出结论【详解】0k1,k-10,此函数是减函数,1x1,当x=1时,y最小=1(k-1)+1=1k-1故选A【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k0)中,当k0,b0时函数图象经过一、二、四象限是解答此题的关键3、B【解析】根据中位数和众数的定义分别进行解答即可【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众
11、数是160;故选B【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数4、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛
12、】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一5、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且故选A6、B【解析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】A、是分数,属于有理数;B、是无理数;C、=3,是整数,属于有理数;D、-是分数,属于有理数;故选B【点睛】此题主要考查了无理数的定义,其中初中范围内学习的
13、无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数7、C【解析】分析:如图,延长AB交CF于E,ACB=90,A=30,ABC=601=35,AEC=ABC1=25GHEF,2=AEC=25故选C8、D【解析】试题解析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜花盆数为故选C.9、B【解析】先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加【详解】第1,2,3,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,a1,1来
14、确定,是否同意第2号同学当选依次由a1,2,a2,2,a3,2,a1,2来确定,a1,1a1,2+a2,1a2,2+a3,1a3,2+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,故选B【点睛】本题考查了推理应用题,题目比较新颖,是基础题10、C【解析】分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得C的度数详解:ABCD, 故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和. 二、填空题(共7小题,每小题3分,满分21分)11、(4,6),(82,6),(2,6)【解析】分别取三个点作为定点,然后根据勾
15、股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标【详解】解:当M为顶点时,AB长为底=8,M在DC中点上, 所以M的坐标为(4, 6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME=2所以M的坐标为(82,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF=2所以M的坐标为(2,6);综上所述,M的坐标为(4,6),(82,6),(2,6);故答案为:(4,6),(82,6),(2,6)【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.12、1【解析】根据二次根式的乘法法则进行计算即可.【
16、详解】 故答案为:1【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.13、【解析】试题分析:四边形ABCD与四边形EFGH位似,位似中心点是点O,则 故答案为点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键14、1.2101【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:12纳米120.000000001米1.2101米故答案为1.2101【点睛】本题考查用科学记数法表示较小的数,一般形式为a
17、10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定15、-6【解析】如图,作ACx轴,BDx轴,OAOB,AOB=90,OAC+AOC=90,AOC+BOD=90,OAC=BOD,ACOODB,OAB=60,设A(x,),BD=OC=x,OD=AC=,B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.16、【解析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+26个火柴组成,组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛
18、】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.17、【解析】将ABM绕点A逆时针旋转,使AB与AD重合,得到ADH证明MANHAN,得到MN=NH,根据三角形周长公式计算判断;判断出BM=DN时,MN最小,即可判断出;根据全等三角形的性质判断;将ADF绕点A顺时针性质90得到ABH,连接HE证明EAHEAF,得到HBE=90,根据勾股定理计算判断;根据等腰直角三角形的判定定理判断;根据等腰直角三角形的性质、三角形的面积公式计算,判断,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断【详解】将ABM绕点A逆时针旋转,使AB与AD重合,得到ADH则DAH
19、=BAM,四边形ABCD是正方形,BAD=90,MAN=45,BAN+DAN=45,NAH=45,在MAN和HAN中,MANHAN,MN=NH=BM+DN,正确;BM+DN1,(当且仅当BM=DN时,取等号)BM=DN时,MN最小,BM=b,DH=BM=b,DH=DN,ADHN,DAH=HAN=11.5,在DA上取一点G,使DG=DH=b,DGH=45,HG=DH=b,DGH=45,DAH=11.5,AHG=HAD,AG=HG=b,AB=AD=AG+DG=b+b=b=a,当点M和点B重合时,点N和点C重合,此时,MN最大=AB,即:,1,错误;MN=NH=BM+DNCMN的周长=CM+CN+M
20、N=CM+BM+CN+DN=CB+CD,CMN的周长等于正方形ABCD的边长的两倍,结论正确;MANHAN,点A到MN的距离等于正方形ABCD的边长AD,结论正确; 如图1,将ADF绕点A顺时针性质90得到ABH,连接HEDAF+BAE=90-EAF=45,DAF=BAE,EAH=EAF=45,EA=EA,AH=AD,EAHEAF,EF=HE,ABH=ADF=45=ABD,HBE=90,在RtBHE中,HE1=BH1+BE1,BH=DF,EF=HE,EF1=BE1+DF1,结论正确;四边形ABCD是正方形,ADC=90,BDC=ADB=45,MAN=45,EAN=EDN,A、E、N、D四点共圆
21、,ADN+AEN=180,AEN=90AEN是等腰直角三角形,同理AFM是等腰直角三角形;结论正确;AEN是等腰直角三角形,同理AFM是等腰直角三角形,AM=AF,AN=AE,如图3,过点M作MPAN于P,在RtAPM中,MAN=45,MP=AMsin45,SAMN=ANMP=AMANsin45,SAEF=AEAFsin45,SAMN:SAEF=1,SAMN=1SAEF,正确;点A到MN的距离等于正方形ABCD的边长,S正方形ABCD:SAMN=1AB:MN,结论正确即:正确的有,故答案为【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解
22、本题的关键是构造全等三角形三、解答题(共7小题,满分69分)18、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,200
23、0x+2500(30-x)=68000,解得x=14,30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x(30-x),解得x10,设全部收购该基地生姜的年总收入为y元,则y=82000x+72500(30-x)=-1500x+525000,y随x的增大而减小,当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式19、(1)一个水瓶40元,一个水
24、杯是8元;(2)当10n25时,选择乙商场购买更合算当n25时,选择甲商场购买更合算【解析】(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意得:3x+4(48x)152,解得:x40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(405+8n)80%160+6.4n乙商场所需费用为540+(n52)8120+8n则n10,且n为整数,160+6.4n(120+8n)401.6n讨论:当10n25时,401.6n0,160+
25、0.64n120+8n,选择乙商场购买更合算当n25时,401.6n0,即 160+0.64n120+8n,选择甲商场购买更合算【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.20、2,1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3x2 它的整数解为:2,1,0,1,221、(1)10750;(2);(3)最大利润为10750元.【解析】(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式
26、进行求解即可;(2)根据题意,分两种情况进行讨论:0m200;200m400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【详解】(1)甲种T恤进货250件乙种T恤进货量为:400-250=150件故由题意得,;(2);故.(3)由题意,综上,最大利润为10750元.【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键22、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【解析】(1)根据题意得出方程组,求出b、
27、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案【详解】解:(1)由题意得:,解得:,抛物线的解析式为y=-x2+2x+2;(2)由y=-x2+2x+2得:当x=0时,y=2,B(0,2),由y=-(x-1)2+3得:C(1,3),A(3,-1),AB=3,BC=,AC=2,AB2+BC2=AC2,ABC=90,ABC是直角三角形;(3)如图,当点Q在线段AP上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=AQ
28、PEAD,PQEAQD,=1,PE=AD=1由-x2+2x+2=1得:x=1,P(1+,1)或(1-,1),如图,当点Q在PA延长线上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=3AQPEAD,PQEAQD,=3,PE=3AD=3由-x2+2x+2=-3得:x=1,P(1+,-3),或(1-,-3),综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键23、,1【解析】原式括号中的两项通分并
29、利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将变形为,整体代入计算即可【详解】解:原式,原式【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则24、米【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论试题解析:解:ABEF,DEEF,ABC=90,ABDE,FABFDE, ,FB=4米,BE=6米,DE=9米,得AB=3.6米,ABC=90,BAC=53,cosBAC=,AC= =6米,AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答