《2022-2023学年四川省北师大广安实验校中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省北师大广安实验校中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知,则的值为ABCD2已知抛物线y=x2-2mx-4(m0)的顶点M关于坐标原点O的对称点为M,若点M在这条抛物线上,则点M的坐标为()A(1,-5)B(3,-13)C(2,-8)D(4
2、,-20)3如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()ABC1D4下列运算正确的是()Aa3+a3a6Ba6a2a4Ca3a5a15D(a3)4a75如图,ABC是等腰直角三角形,A=90,BC=4,点P是ABC边上一动点,沿BAC的路径移动,过点P作PDBC于点D,设BD=x,BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A B C D66的倒数是()ABC6D67如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”下列各组数据中,能作为一个智慧三角形三边长的一组是()A
3、1,2,3B1,1,C1,1,D1,2,8使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )ABCD9下列各数:1.414,0,其中是无理数的为( )A1.414BCD010下列关于x的方程中,属于一元二次方程的是()Ax1=0Bx2+3x5=0Cx3+x=3Dax2+bx+c=011如图,在44的正方形网格中,每个小正方形的边长都为1,AOB的三个顶点都在格点上,现将AOB
4、绕点O逆时针旋转90后得到对应的COD,则点A经过的路径弧AC的长为()ABC2D312钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,OAC 和BAD 都是等腰直角三角形,ACO=ADB=90,反比例函数y=在第一象限的图象经过点 B,则OAC 与BAD 的面积之差 SOACSBAD 为_.14计算:2a(2b)=_15如图,已知矩形ABCD中,点E是BC边上的点,BE2,EC1,AEBC,DFAE,垂足为F则下列结论:ADFEAB;AFBE;DF平分ADC;sinCDF其中
5、正确的结论是_(把正确结论的序号都填上)16如图,在ABC中,CA=CB,ACB=90,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90的EDF,与半圆交于点E,F,则图中阴影部分的面积是_17如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB=20,则OCD= .18因式分解:9a212a+4_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AD是等腰ABC底边BC上的高,点O是AC中点,延长DO到E,使AEBC,连接AE求证:四边形ADCE是
6、矩形;若AB17,BC16,则四边形ADCE的面积 若AB10,则BC 时,四边形ADCE是正方形20(6分)解不等式组: ,并写出它的所有整数解21(6分)如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标22(8分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元
7、(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元要求精加工数量不多于粗加工数量的三倍为获得最大利润,精加工数量应为多少吨?最大利润是多少?23(8分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000
8、户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?24(10分)如图,在中,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径求证:与相切;当时,求的半径25(10分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(2,0)与动点P(0,t)的直线MP记作l.(1)若l的解析式为y2x4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围26(12分)解方程组.27(12分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不
9、完整的统计图(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】由题意得,4x0,x40,解得x=4,则y=3,则=,故选:C. 2、C【解析】试题分析:=,点M(m,m21),点M(m,m2+1),m2+2m21=m2+1解得m=2m0,m=2,M(2,8)故选C
10、考点:二次函数的性质3、D【解析】过F作FHAE于H,根据矩形的性质得到AB=CD,AB/CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相 似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【详解】解:如图:解:过F作FHAE于H,四边形ABCD是矩形,AB=CD,ABCD,AE/CF, 四边形AECF是平行四边形,AF=CE,DE=BF,AF=3-DE,AE=,FHA=D=DAF=,AFH+HAF=DAE+FAH=90, DAE=AFH,ADEAFH,AE=AF,DE=,故选D.【点睛】本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题
11、的关键.4、B【解析】根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a32a3,故A错误;B、a6a2a4,故B正确;C、a3a5a8,故C错误;D、(a3)4a12,故D错误故选:B【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.5、B【解析】解:过A点作AHBC于H,ABC是等腰直角三角形,B=C=45,BH=CH=AH=BC=2,当0x2时,如图1,B=45,PD=BD=x,y=xx=;当2x4时,如图2,C=45,PD=CD=4x,y=(4x)x=,故选B6、A【解析】解:6的倒数是故选A7、D【解析】根据三角形三边
12、关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120,底角30的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,依此即可作出判定【详解】1+2=3,不能构成三角形,故选项错误;B、12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120,底角30的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,其中9030=3,符合“智慧三角形”的定义,故选项正确故选D8、C【解析】根据已知三点和近似满足函数
13、关系y=ax2+bx+c(a0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41旋钮的旋转角度在36和54之间,约为41时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点9、B【解析】试题分析:根据无理数的定义可得是无理数故答案选B.考点:无理数的定义.10、B【解析】根据一元二次方程必须同时满足三个条件:整式方程,即等号两边
14、都是整式;方程中如果有分母,那么分母中无未知数;只含有一个未知数;未知数的最高次数是2进行分析即可【详解】A. 未知数的最高次数不是2,不是一元二次方程,故此选项错误;B.是一元二次方程,故此选项正确;C.未知数的最高次数是3,不是一元二次方程,故此选项错误;D.a=0时,不是一元二次方程,故此选项错误;故选B.【点睛】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;只含有一个未知数;未知数的最高次数是2.11、A【解析】根据旋转的性质和弧长公式解答即可【详解】解:将AOB绕点O逆时针旋转90后
15、得到对应的COD,AOC90,OC3,点A经过的路径弧AC的长= ,故选:A【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答12、A【解析】根据轴对称图形的概念求解解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A“点睛”本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.【详解】设OAC和BAD的直角边长分别为a、b
16、,则B点坐标为(a+b,a-b)点B在反比例函数y=在第一象限的图象上,(a+b)(a-b)=a2-b2=3SOACSBAD=a2-b2=【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.14、4ab【解析】根据单项式与单项式的乘法解答即可【详解】2a(2b)=4ab故答案为4ab【点睛】本题考查了单项式的乘法,关键是根据单项式的乘法法则解答15、【解析】只要证明EABADF,CDF=AEB,利用勾股定理求出AB即可解决问题【详解】四边形ABCD是矩形,AD=BC,ADBC,B=90,BE=2,EC=1,AE=AD=
17、BC=3,AB=,ADBC,DAF=AEB,DFAE,AFD=B=90,EABADF,AF=BE=2,DF=AB=,故正确,不妨设DF平分ADC,则ADF是等腰直角三角形,这个显然不可能,故错误,DAF+ADF=90,CDF+ADF=90,DAF=CDF,CDF=AEB,sinCDF=sinAEB=,故错误,故答案为【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型16、1【解析】连接CD,作DMBC,DNAC,证明DMGDNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影
18、部分的面积即可求得【详解】连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:=CA=CB,ACB=90,点D为AB的中点,CD平分BCA又DMBC,DNAC,DM=DNGDH=MDN=90,GDM=HDN在DMG和DNH中,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=1则阴影部分的面积是:1故答案为1【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键17、65【解析】解:由题意分析之,得出弧BD对应的圆周角是
19、DAB,所以,=40,由此则有:OCD=65考点:本题考查了圆周角和圆心角的关系点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握18、(3a1)1【解析】直接利用完全平方公式分解因式得出答案【详解】9a1-11a+4=(3a-1)1故答案是:(3a1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)见解析;(2)1; .【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出ADC=90,根据矩形的判定得出即可;
20、(2)求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;要使ADCE是正方形,只需要ACDE,即DOC=90,只需要OD2+OC2=DC2,即可得到BC的长试题解析:(1)证明:AEBC,AEO=CDO又AOE=COD,OA=OC,AOECOD,OE=OD,而OA=OC,四边形ADCE是平行四边形AD是BC边上的高,ADC=90ADCE是矩形(2)解:AD是等腰ABC底边BC上的高,BC=16,AB=17,BD=CD=8,AB=AC=17,ADC=90,由勾股定理得:AD=12,四边形ADCE的面积是ADDC=128=1当BC=时,DC=DB=ADCE是矩形,OD=OC=2OD2+O
21、C2=DC2,DOC=90,ACDE,ADCE是正方形点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中20、2,1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3x2 它的整数解为:2,1,0,1,221、 (1)yx2x4(2)点M的坐标为(2,4)(3)或【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线
22、解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM(m2)212. 当m2时,四边形OAMC面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC4,CDC1D,AD43;设点P ,过P作PQ垂直于x轴,垂足为Q. 证PAQC1AD,得,即,解得解得n,或n,或n4(舍去).【详解】(1)抛物线的解析式为y (x4)(x2)x2x4.(2)连接OM,设点M的坐标为. 由题意知,当四边形OAMC
23、面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM 4m 4 m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.OAOC,AOC90,CDC190,AC4,CDC1D,AD43,设点P ,过P作PQ垂直于x轴,垂足为Q.PABCAC1,AQPADC1,PAQC1AD,即 ,化简得 (82n),即3n26n2482n,或3n26n24(82n),解得n,或n,或n4(舍去),点P的横坐标为或.【
24、点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.22、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1【解析】(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨构建方程组即可解决问题(2)设精加工x吨,利润为w元,则粗加工(100-x)吨利润w=800x+400(200x)=400x+80000,再由x3(100-x),解得x150,即可解决问题【详解】(1)设第一次购进a吨,第二次购进b吨,解得 ,答:第一次购进40吨,第二次购进160吨;(2)设精加工x吨,利润为w元,w=800x+
25、400(200x)=400x+80000,x3(200x),解得,x150,当x=150时,w取得最大值,此时w=1,答:为获得最大利润,精加工数量应为150吨,最大利润是1【点睛】本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.23、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励【解析】(1)设年平均增长率为x,根据“2015年投入资金(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和500万”列
26、不等式求解即可【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:10008400+(a1000)54005000000,解得:a1900,答:今年该地至少有1900户享受到优先搬迁租房奖励考点:一元二次方程的应用;一元一次不等式的应用.24、 (1)证明见解析;(2)【解析】(1)连接OM,证明OMBE,再结合等腰三角形的性质说明AEBE,进而证明OMAE;(2)
27、结合已知求出AB,再证明AOMABE,利用相似三角形的性质计算【详解】(1)连接OM,则OM=OB,1=2,BM平分ABC,1=3,2=3,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90,AMO=90,OMAE,点M在圆O上,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=4,cosC=BE=2,cosABC=,在ABE中,AEB=90,AB=6,设O的半径为r,则AO=6-r,OMBC,AOMABE,解得,的半径为【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合
28、性较强,正确添加辅助线,熟练运用相关知识是解题的关键.25、 (1)点A在直线l上,理由见解析;(2)t4.【解析】(1)由题意得点B、A坐标,把点A的横坐标x1代入解析式y2x4得出y的值,即可得出点A在直线l上;(2)当直线l经过点D时,设l的解析式代入数值解出即可【详解】(1)此时点A在直线l上BCAB2,点O为BC中点,点B(1,0),A(1,2)把点A的横坐标x1代入解析式y2x4,得y2,等于点A的纵坐标2,此时点A在直线l上(2)由题意可得,点D(1,2),及点M(2,0),当直线l经过点D时,设l的解析式为ykxt(k0),解得由(1)知,当直线l经过点A时,t4.当直线l与A
29、D边有公共点时,t的取值范围是t4.【点睛】本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.26、或【解析】把y=x代入,解得x的值,然后即可求出y的值;【详解】把(1)代入(2)得:x2+x20,(x+2)(x1)0,解得:x2或1,当x2时,y2,当x1时,y1,原方程组的解是或【点睛】本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数27、(1)1000 (2)200 (3)54 (4)4000人【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的
30、人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解试题解析:(1)被调查的同学的人数是40040%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360=54;(4)200=4000(人)答:校20000名学生一餐浪费的食物可供4000人食用一餐【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小