2022-2023学年江苏省扬州市竹西中学中考数学全真模拟试题含解析.doc

上传人:茅**** 文档编号:87796881 上传时间:2023-04-17 格式:DOC 页数:17 大小:736KB
返回 下载 相关 举报
2022-2023学年江苏省扬州市竹西中学中考数学全真模拟试题含解析.doc_第1页
第1页 / 共17页
2022-2023学年江苏省扬州市竹西中学中考数学全真模拟试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年江苏省扬州市竹西中学中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省扬州市竹西中学中考数学全真模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若分式有意义,则a的取值范围为( )Aa4Ba4Ca4Da42如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转)

2、,则记录的两个数字都是正数的概率为( )ABCD3叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米其中,0.00005用科学记数法表示为()A0.5104B5104C5105D501034ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )ABE=DFBAE=CFCAF/CEDBAE=DCF5在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是ABC的()A三条高的交点B重心C内心D外心

3、6如图1,在等边ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则ABC的面积为( ) A4BC12D7估计2的值应该在()A10之间B01之间C12之间D23之间8下列各数中,无理数是()A0BCD9完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A6(mn)B3(m+n)C4nD4m10的相反数是 ( )ABC3D-311如图,矩形ABCD的顶点A、C分别在直线a、b上,且ab,1=60,则2的度数为( )A30B45C60D7512如果向北走6km记作+6km

4、,那么向南走8km记作()A+8km B8km C+14km D2km二、填空题:(本大题共6个小题,每小题4分,共24分)13将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_14如图所示:在平面直角坐标系中,OCB的外接圆与y轴交于A(0,),OCB=60,COB=45,则OC= 15定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”根据上述定义,“距离坐标”是(1,2)的点的个数共有_个16如图,在中, ,点在上,交于点,交于点,当时,_17如图,在梯形ABCD中,ADBC,

5、A=90,点E在边AB上,AD=BE,AE=BC,由此可以知道ADE旋转后能与BEC重合,那么旋转中心是_18反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,E,F是ABCD的对角线AC上的两点,BEDF.求证:AFCE20(6分)如图,AB为半圆O的直径,AC是O的一条弦,D为的中点,作DEAC,交AB的延长线于点F,连接DA求证:EF为半圆O的切线;若DADF6,求阴影区域的面积(结果保留根号和)21(6分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况

6、进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率22(8分)如图,已知A(4,),B(1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,ACx轴于点C,BDy轴于点D(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若PCA和PDB面积相等,求点P坐标23(8分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1如图2,正方形ABCD顶点处各有一个圈跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形

7、的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;设游戏者从圈A起跳(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24(10分)解不等式组:25(10分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60,眼睛离地面的距离ED为1.5米试帮助小华求出旗杆AB的高度(结果精确到0

8、.1米,).26(12分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,作轴于E点求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围27(12分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每

9、天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分式有意义时,分母a-40【详解】依题意得:a40,解得a4.故选:A【点睛】此题考查分式有意义的条件,难度不大2、C【解析】列表得,120-11(1,1)(1,2)(1,0)(1,-1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为

10、,故选C.考点:用列表法(或树形图法)求概率.3、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005,故选C.4、B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,四边形ABCD是平行四边形,OA=OC,OB=OD,BE=DF,OE=OF,四边形AECF是平行四边形,故不符合题意; B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,四边形ABCD是平行四边形,OA=OC,AF/C

11、E,FAO=ECO,又AOF=COE,AOFCOE,AF=CE,AF CE,四边形AECF是平行四边形,故不符合题意; D、如图,四边形ABCD是平行四边形,AB=CD,AB/CD,ABE=CDF,又BAE=DCF,ABECDF,AE=CF,AEB=CFD,AEO=CFO,AE/CF,AE CF,四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.5、D【解析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上【详解】三角形的三条垂直

12、平分线的交点到中间的凳子的距离相等,凳子应放在ABC的三条垂直平分线的交点最适当故选D【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养想到要使凳子到三个人的距离相等是正确解答本题的关键6、D【解析】分析:由图1、图2结合题意可知,当DPAB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PDAB于点P,连接AD,结合ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DPAB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PDAB于点P,连接AD,ABC是等边三角形,点D是BC边上的中点,AB

13、C=60,ADBC,DPAB于点P,此时DP=,BD=,BC=2BD=4,AB=4,AD=ABsinB=4sin60=,SABC=ADBC=.故选D.点睛:“读懂题意,知道当DPAB于点P时,DP最短=”是解答本题的关键.7、A【解析】直接利用已知无理数得出的取值范围,进而得出答案【详解】解:12,1-222-2,-120即-2在-1和0之间故选A【点睛】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键8、D【解析】利用无理数定义判断即可.【详解】解:是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.9、D【解析】解:设小长方形的宽为a,长为b,则有b=n

14、-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m故选D10、B【解析】先求的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1因此的相反数是故选B11、C【解析】试题分析:过点D作DEa,四边形ABCD是矩形,BAD=ADC=90,3=901=9060=30,ab,DEab,4=3=30,2=5,2=9030=60故选

15、C考点:1矩形;2平行线的性质.12、B【解析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量若向北走6km记作+6km,那么向南走8km记作8km故选:B【点睛】本题考查正负数在生活中的应用注意用正负数表示的量必须是具有相反意义的量二、填空题:(本大题共6个小题,每小题4分,共24分)13、y=3x-1【解析】y=3x+1的图象沿y轴向下平移2个单位长度,平移后所得图象对应的函数关系式为:y=3x+12,即y=3x1故答案为y=3x114、1+【解析】试题分析:连接AB,由圆周角定理知AB必过圆心M,RtABO中,易知BAO=O

16、CB=60,已知了OA=,即可求得OB的长;过B作BDOC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长解:连接AB,则AB为M的直径RtABO中,BAO=OCB=60,OB=OA=过B作BDOC于DRtOBD中,COB=45,则OD=BD=OB=RtBCD中,OCB=60,则CD=BD=1OC=CD+OD=1+故答案为1+点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键15、4【解析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.【详解】距离坐标是(1,2)的点有(1,2),

17、(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4.【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键.16、1【解析】如图作PQAB于Q,PRBC于R由QPERPF,推出=2,可得PQ=2PR=2BQ,由PQBC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题【详解】如图,作PQAB于Q,PRBC于RPQB=QBR=BRP=90,四边形PQBR是矩形,QPR=90=MPN,QPE=RPF,QPERPF,=2,PQ=2PR=2BQPQBC,AQ:QP:AP=AB:BC:AC=1

18、:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,2x+1x=1,x=,AP=5x=1故答案为:1【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型17、CD的中点【解析】根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论【详解】ADE旋转后能与BEC重合,ADEBEC,AED=BCE,B=A=90,ADE=BEC,DE=EC,AED+BEC=90,DEC=90,DEC是等腰直角三角形,D与E,E与C是对应顶点,CD的中点到D,E,C三点的距离相等,旋转中心是CD的中点,故答

19、案为:CD的中点【点睛】本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念18、4【解析】利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.【详解】把点(2,m)代入反比例函数和正比例函数中得,则.【点睛】本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、参见解析【解析】分析:先证ACB=CAD,再证出BECDFA,从而得出CE=AF详解:证明:平行四边形中,又, 点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.20、(1)证明

20、见解析 (2)6【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出ODEF,即可得出答案;(2)直接利用得出SACDSCOD,再利用S阴影SAEDS扇形COD,求出答案【详解】(1)证明:连接OD,D为弧BC的中点,CADBAD,OAOD,BADADO,CADADO,DEAC,E90,CAD+EDA90,即ADO+EDA90,ODEF,EF为半圆O的切线;(2)解:连接OC与CD,DADF,BADF,BADFCAD,又BAD+CAD+F90,F30,BAC60,OCOA,AOC为等边三角形,AOC60,COB120,ODEF,F30,DOF60,在RtODF中,DF6,ODDFtan3

21、06,在RtAED中,DA6,CAD30,DEDAsin303,EADAcos309,COD180AOCDOF60,由CODO,COD是等边三角形,OCD60,DCOAOC60,CDAB,故SACDSCOD,S阴影SAEDS扇形COD【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出SACDSCOD是解题关键21、25%【解析】首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.【详解】设这两年中获奖人

22、次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1=25%,x2=(不符合题意,舍去)答:这两年中获奖人次的年平均年增长率为25%22、(1)m=2;y=x+;(2)P点坐标是(,)【解析】(1)利用待定系数法求一次函数和反比例函数的解析式;(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标【详解】解:(1)反比例函数的图象过点 点B(1,m)也在该反比例函数的图象上,1m=2,m=2;设一次函数的解析式为y=kx+b,由y=kx+b的图象过点A,B(1,2),则 解得: 一次函数的解析式为 (2)连接PC、PD,

23、如图,设 PCA和PDB面积相等, 解得: P点坐标是 【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.23、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样【解析】(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;【详解】(1)共有1种等可能的结果,落回到圈A的只有1种情况,落回到圈A的概率P1=;(2)列表得: 1 2 3 11(1,1)(2,1)

24、(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),最后落回到圈A的概率P2=,她与嘉嘉落回到圈A的可能性一样【点睛】此题考查了列表法或树状图法求概率注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数24、9x1【解析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案【详解】解不等式1(x1)2x,得:x1,解不等式1,得:x9,则原不等式组的解集为9x1【点睛】此题考查了解一元一次不等式组,用到

25、的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分25、11.9米【解析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【详解】BD=CE=6m,AEC=60,AC=CEtan60=6=661.73210.4m,AB=AC+DE=10.4+1.5=11.9m答:旗杆AB的高度是11.9米.26、(1),;(2)8;(3)或【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可

26、求解试题解析:解:(1)OB=4,OE=2,BE=2+4=1CEx轴于点E,tanABO=,OA=2,CE=3,点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(2,3)一次函数y=ax+b的图象与x,y轴交于B,A两点,解得:故直线AB的解析式为反比例函数的图象过C,3=,k=1,该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,1),则BOD的面积=412=2,BOC的面积=432=1,故OCD的面积为2+1=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x2或0x1点睛:本题考查了反比例函数与一次函数的

27、交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点27、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由

28、题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁