2022-2023学年北京市西城区北京师范大学第二附属中学高三下学期第六次检测数学试卷含解析.doc

上传人:茅**** 文档编号:87796798 上传时间:2023-04-17 格式:DOC 页数:19 大小:1.94MB
返回 下载 相关 举报
2022-2023学年北京市西城区北京师范大学第二附属中学高三下学期第六次检测数学试卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年北京市西城区北京师范大学第二附属中学高三下学期第六次检测数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年北京市西城区北京师范大学第二附属中学高三下学期第六次检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年北京市西城区北京师范大学第二附属中学高三下学期第六次检测数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,其中,若恒成立,则函数的单调递增区间为( )ABCD2某几何体的三视图如右图所示,则该几何体的外接球表面积为( )ABCD3已知集合的所有三个元素的子集记为记为集合中的最大元素,则()ABCD4已知复数,则( )ABCD25曲线在点处的切线

2、方程为,则( )ABC4D86已知,则的值等于( )ABCD7若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( )A85B84C57D568已知是函数的极大值点,则的取值范围是ABCD9已知函数,则下列结论错误的是( )A函数的最小正周期为B函数的图象关于点对称C函数在上单调递增D函数的图象可由的图象向左平移个单位长度得到10在中,若,则实数( )ABCD11若函数()的图象过点,则( )A函数的值域是B点是的一个对称中心C函数的最小正周期是D直线是的一条对称轴12已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )ABCD二、填空题:本题共4小题,每小题5分,共2

3、0分。13易经是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_.14设Sn为数列an的前n项和,若an0,a1=1,且2Sn=an(an+t),nN*,则S10=_.15若,则_16已知函数,若函数有6个零点,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.(1)求的值;(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.1

4、8(12分)如图, 在四棱锥中, 底面是矩形, 四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.19(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.20(12分)已知函数(1)若,求的取值范围;(2)若,对,不等式恒成立,求的取值范围21(12分)在中,设、分别为角、的对边,记的面积为,且(1)求角的大小;(2)若,求的值22(10分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题

5、给出的四个选项中,只有一项是符合题目要求的。1、A【解析】,从而可得,再解不等式即可.【详解】由已知,所以,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.2、A【解析】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,且平面,的中点为外接球的球心,半径,外接球表面积故选:A【点睛】本题考查了由三视图求几何体的外接

6、球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键3、B【解析】分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以故选:【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.4、C【解析】根据复数模的性质即可求解.【详解】,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.5、B【解析】求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所

7、以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.6、A【解析】由余弦公式的二倍角可得,再由诱导公式有,所以【详解】由余弦公式的二倍角展开式有又故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题7、A【解析】先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.8、B【解析】方法一:令,则,当,时,单调递减,时,且,即

8、在上单调递增,时,且,即在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,故选B方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得,故选B9、D【解析】由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,所以B正确;当时,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是

9、一道中档题.10、D【解析】将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.11、A【解析】根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,故,对于A,由,则,故A正确;对于B,当时,故B错误;对于C,故C错误;对于D,当时,故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.12、B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.二、填空题:

10、本题共4小题,每小题5分,共20分。13、【解析】观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。【详解】八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为。故答案为:。【点睛】本题考查古典概型,解题关键是确定基本事件的个数。本题不能受八卦影响,我们关心的是八卦中阴线和阳线的

11、条数,这样才能正确地确定基本事件的个数。14、55【解析】由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【详解】由题意,当n=1时,当时,由,可得,两式相减,可得,整理得,即,数列是以1为首项,1为公差的等差数列,.故答案为:55.【点睛】本题考查求数列的前项和,属于基础题.15、【解析】因为,所以,又,所以,则,所以16、【解析】由题意首先研究函数的性质,然后结合函数的性质数形结合得到关于a的不等式,求解不等式即可确定实数a的取值范围.【详解】当时,函数在区间上单调递增,很明显,且存在唯一的实数满足,当时,由对勾函数的性质可知函数在区间上单调递减,在区间上单调递

12、增,结合复合函数的单调性可知函数在区间上单调递减,在区间上单调递增,且当时,考查函数在区间上的性质,由二次函数的性质可知函数在区间上单调递减,在区间上单调递增,函数有6个零点,即方程有6个根,也就是有6个根,即与有6个不同交点,注意到函数关于直线对称,则函数关于直线对称,绘制函数的图像如图所示,观察可得:,即.综上可得,实数的取值范围是.故答案为【点睛】本题主要考查分段函数的应用,复合函数的单调性,数形结合的数学思想,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)联立直

13、线的方程和抛物线的方程,化简写出根与系数关系,由于直线平分,所以,代入点的坐标化简得,结合跟鱼系数关系,可求得;(2)设,由三点共线得,再次代入点的坐标并化简得,同理由三点共线,可得,化简得,故.试题解析:(1)由,整理得,设,则,因为直线平分,所以,即,所以,得,满足,所以.(2)由(1)知抛物线方程为,且,设,由三点共线得,所以,即,整理得:,由三点共线,可得,式两边同乘得:,即:,由得:,代入得:,即:,所以.所以.考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立,相当于得

14、到的坐标,但是设而不求.根据直线平分,有,这样我们根据斜率的计算公式,代入点的坐标,就可以计算出的值.第二问主要利用三点共线来求解.18、(1)证明见解析;(2)证明见解析.【解析】证明:(1)在矩形中,又平面,平面,所以平面 (2)连结,交于点,连结,在矩形中,点为的中点,又,故, 又,平面,所以平面, 又平面,所以平面平面19、(1),(2)(3)【解析】(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,然后利用公式法,可得结果.(2)根据(1)的结论,利用错位相减法求和,可得结果.(3)计算出,代值计算并化简,可得结果.【详解】解:(1)依题意:,即,解得:所以,(

15、2),上面两式相减,得:则即所以,(3),所以由得,即【点睛】本题主要考查等差数列和等比数列的综合应用,以及利用错位相减法求和,属基础题.20、(1);(2).【解析】(1)分类讨论,即可得出结果;(2)先由题意,将问题转化为即可,再求出,的最小值,解不等式即可得出结果.【详解】(1)由得,若,则,显然不成立;若,则,即;若,则,即,显然成立,综上所述,的取值范围是(2)由题意知,要使得不等式恒成立,只需,当时,所以;因为,所以,解得,结合,所以的取值范围是【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记分类讨论的思想、以及绝对值不等式的性质即可,属于常考题型.2

16、1、(1);(2)【解析】(1)由三角形面积公式,平面向量数量积的运算可得,结合范围,可求,进而可求的值(2)利用同角三角函数基本关系式可求,利用两角和的正弦函数公式可求的值,由正弦定理可求得的值【详解】解:(1)由,得,因为,所以,可得:(2)中,所以.所以:,由正弦定理,得,解得,【点睛】本题主要考查了三角形面积公式,平面向量数量积的运算,同角三角函数基本关系式,两角和的正弦函数公式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题22、(1);(2)4.【解析】(1)利用三角形的面积公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本关系式求得.【详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁