《2022-2023学年四川省成都市双流区双流棠湖中学高考数学倒计时模拟卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省成都市双流区双流棠湖中学高考数学倒计时模拟卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在直角梯形ABCD中,ABDC,ADDC,ADDC2AB,E为AD的中点,若,则的值为()A BCD2下列函数中,既是偶函数又在区间上单调递增的是( )ABCD3如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,
2、将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )ABCD4设x、y、z是空间中不同的直线或平面,对下列四种情形:x、y、z均为直线;x、y是直线,z是平面;z是直线,x、y是平面;x、y、z均为平面.其中使“且”为真命题的是( )ABCD5已知l,m是两条不同的直线,m平面,则“”是“lm”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件6如图,已知平面,、是直线上的两点,、是平面内的两点,且,是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是( )ABCD7设不等式组表示的平面区域为,若从圆:的内
3、部随机选取一点,则取自的概率为( )ABCD8执行如图所示的程序框图,则输出的结果为( )ABCD9过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则( )ABCD10秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的数书九章中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为ABCD11某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )ABCD1
4、2设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件,则的最小值为_14已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_15已知双曲线的一条渐近线方程为,则_16过点,且圆心在直线上的圆的半径为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.18(12分)(某工厂生产零件A,工人甲生产一件
5、零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜Pi+4(i=4,3,2,4)表示甲总分为i时,最终甲获胜的概率写出
6、P0,P8的值;求决赛甲获胜的概率19(12分)已知椭圆的焦距是,点是椭圆上一动点,点是椭圆上关于原点对称的两点(与不同),若直线的斜率之积为.()求椭圆的标准方程;()是抛物线上两点,且处的切线相互垂直,直线与椭圆相交于两点,求的面积的最大值.20(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.21(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系22(10分)山东省高考改革试点方案规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考
7、科目和物理、化学等六门选考科目构成将每门选考科目的考生原始成绩从高到低划分为、共8个等级参照正态分布原则,确定各等级人数所占比例分别为、选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、八个分数区间,得到考生的等级成绩某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望(附:若随机变量,则,)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小
8、题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB1,则CDAD2,所以C(2,0),A(0,2),B(1,2),E(0,1), (2,2)(2,1)(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.2、C【解析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【
9、点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.3、D【解析】先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.4、C【解析】举反例,如直线x、y、z位于正方体的三条共点棱时用垂直于同一平面的两直线平行判断.用垂直于同一直
10、线的两平面平行判断.举例,如x、y、z位于正方体的三个共点侧面时.【详解】当直线x、y、z位于正方体的三条共点棱时,不正确; 因为垂直于同一平面的两直线平行,正确;因为垂直于同一直线的两平面平行,正确;如x、y、z位于正方体的三个共点侧面时, 不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.5、A【解析】根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m平面时,若l”则“lm”成立,即充分性成立,若lm,则l或l,即必要性不成立,则“l”是“lm”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断
11、,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题6、B【解析】为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果7、B【解析】画出不等式组表示的可行域,求得阴影部分扇形对应的圆
12、心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出中在圆内部的区域,如图所示,因为直线,的倾斜角分别为,所以由图可得取自的概率为.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.8、D【解析】循环依次为 直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9、C【解析】需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义
13、和几何关系分别表示转化出,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题10、C【解析】由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值【详解】解:初始值,程序运行过程如下表所示:,跳出循环,输出的值为其中得故选:【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题11、A【解析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交
14、通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为.故选:A【点睛】本题考查折线图与柱形图,属于基础题.12、A【解析】依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】作出可行域,平移基准直线到处,求得的最小值.【详解】画出可行域如下图所示,由图可知平移基准直线到处时,取得最小值为.故答案为:【点睛】本小题主要考查线性规划求最值,考查数形结合的数学思想方法,属于基础题.14、0.
15、08【解析】先求解这组数据的平均数,然后利用方差的公式可得结果.【详解】首先求得,故答案为:0.08.【点睛】本题主要考查数据的方差,明确方差的计算公式是求解的关键,侧重考查数据分析的核心素养.15、【解析】根据双曲线的标准方程写出双曲线的渐近线方程,结合题意可求得正实数的值.【详解】双曲线的渐近线方程为,由于该双曲线的一条渐近线方程为,解得.故答案为:.【点睛】本题考查利用双曲线的渐近线方程求参数,考查计算能力,属于基础题.16、【解析】根据弦的垂直平分线经过圆心,结合圆心所在直线方程,即可求得圆心坐标.由两点间距离公式,即可得半径.【详解】因为圆经过点则直线的斜率为 所以与直线垂直的方程斜
16、率为点的中点坐标为所以由点斜式可得直线垂直平分线的方程为,化简可得而弦的垂直平分线经过圆心,且圆心在直线上,设圆心所以圆心满足解得所以圆心坐标为则圆的半径为 故答案为: 【点睛】本题考查了直线垂直时的斜率关系,直线与直线交点的求法,直线与圆的位置关系,圆的半径的求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),.【解析】(1)根据数列的通项与前n项和的关系式,即求解数列的通项公式;(2)由(1)可得,利用等比数列的前n项和公式和裂项法,求得,结合题意,即可求解.【详解】(1)由题意,当时,由,解得;当时,可得,即,显然当时上式也适合,所以数列的
17、通项公式为.(2)由(1)可得,所以.因为对恒成立,所以,.【点睛】本题主要考查了数列的通项公式的求解,等差数列的前n项和公式,以及裂项法求和的应用,其中解答中熟记等差、等比数列的通项公式和前n项和公式,以及合理利用“裂项法”求和是解答的关键,着重考查了推理与运算能力,属于中档试题.18、(1)乙的技术更好,见解析(2),;【解析】(1)列出分布列,求出期望,比较大小即可;(2)直接根据概率的意义可得P0,P8;设每轮比赛甲得分为,求出每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差数列,根据可得答案.【详解】(1)记甲乙各生产一件零件给工厂带来的效益分别为元、元,随机
18、变量,的分布列分别为10521052所以,所以,即乙的技术更好(2)表示的是甲得分时,甲最终获胜的概率,所以,表示的是甲得4分时,甲最终获胜的概率,所以;设每轮比赛甲得分为,则每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率, 所以甲得时,最终获胜有以下三种情况:(1)下一轮得1分并最终获胜,概率为;(2)下一轮得0分并最终获胜,概率为;(3)下一轮得分并最终获胜,概率为;所以,所以是等差数列,则,即决赛甲获胜的概率是.【点睛】本题考查离散型随机变量的分布列和期望,考查数列递推关系的应用,是一道难度较大的题目.19、();()【解析】()设点的坐标,表达出直线的斜率之积,再根据三点均在椭圆
19、上,根据椭圆的方程代入斜率之积的表达式列式求解即可.()设直线的方程为,根据直线的斜率之积为可得,再联立直线与椭圆的方程,表达出面积公式,再换元利用基本不等式求解即可.【详解】()设,则,又,故,即,故,又,故.故椭圆的标准方程为.()设直线的方程为,由 ,故,又,故,因为处的切线相互垂直故.故直线的方程为.联立故.故,代入韦达定理有设,则.当且仅当时取等号.故的面积的最大值为.【点睛】本题主要考查了根据椭圆上的点坐标满足的关系式求解椭圆基本量求方程的方法,同时也考查了抛物线的切线问题以及椭圆中面积的最值问题,需要根据导数的几何意义求切线斜率,再换元利用基本不等式求解.属于难题.20、(1)(
20、2)证明见解析【解析】(1)利用求得数列的通项公式.(2)先将缩小即,由此结合裂项求和法、放缩法,证得不等式成立.【详解】(1),令,得.又,两式相减,得.(2).又,.【点睛】本小题主要考查已知求,考查利用放缩法证明不等式,考查化归与转化的数学思想方法,属于中档题.21、直线与圆C相切【解析】首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系【详解】直线为参数),转换为直角坐标方程为圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离直线与圆C相切【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用
21、,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型22、()1636人;()见解析【解析】()根据正态曲线的对称性,可将区间分为和两种情况,然后根据特殊区间上的概率求出成绩在区间内的概率,进而可求出相应的人数;()由题意得成绩在区间61,80的概率为,且,由此可得的分布列和数学期望【详解】()因为物理原始成绩,所以所以物理原始成绩在(47,86)的人数为(人)()由题意得,随机抽取1人,其成绩在区间61,80内的概率为所以随机抽取三人,则的所有可能取值为0,1,2,3,且,所以 , 所以的分布列为0123所以数学期望【点睛】(1)解答第一问的关键是利用正态分布的三个特殊区间表示所求概率的区间,再根据特殊区间上的概率求解,解题时注意结合正态曲线的对称性(2)解答第二问的关键是判断出随机变量服从二项分布,然后可得分布列及其数学期望当被抽取的总体的容量较大时,抽样可认为是等可能的,进而可得随机变量服从二项分布