《2022-2023学年湖北省宜昌市高新区市级名校中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省宜昌市高新区市级名校中考数学最后冲刺浓缩精华卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A或2B或2C2或2D2或22甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=3某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2
3、018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )ABCD4据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A14.4103B144102C1.44104D1.441045点P(2,5)关于y轴对称的点的坐标为()A(2,5)B(5,2)C(2,5)D(2,5)6如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM4,AB6,则BD的长为( )A4B5C8D107下列计算正确的是( ).A(x+y)2=x2+y2B(xy2)3= x3y6Cx6x3=x2D
4、=28下列计算正确的是()Aa3a2a6B(a3)2a5C(ab2)3ab6Da+2a3a9如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )A15mB25mC30mD20m10已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是A8B9C10D1211如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,那么下列式子中正确的是( )ABCD12如图,在ABC中,AD是
5、BC边的中线,ADC=30,将ADC沿AD折叠,使C点落在C的位置,若BC=4,则BC的长为()A2B2C4D3二、填空题:(本大题共6个小题,每小题4分,共24分)13飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s60t1.2t2,那么飞机着陆后滑行_秒停下14分解因式:x29_ 15对于函数y= ,当函数y-3时,自变量x的取值范围是_ .16如图,在ABC和EDB中,CEBD90,点E在AB上若ABCEDB,AC4,BC3,则AE_17一个正多边形的每个内角等于,则它的边数是_18化简_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过
6、程或演算步骤19(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率20(6分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:该产品90天售量(n件)与时
7、间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310日销售量(n件)198196194?该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1x5050x90销售价格(元/件)x+60100 (1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量(每件销售价格每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.21(6分)我国古代数学著作增删算法统宗记载“官兵分布”问题:“一千官军一千布,一官四疋无
8、零数,四军才分布一疋,请问官军多少数”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹问官和兵各几人?22(8分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2是这个方程的两个实数根,求的值;(3)根据(2)的结果你能得出什么结论?23(8分)已知关于的一元二次方程 (为实数且)求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值24(10分)如图,已知ABC内接于,AB是直径,ODAC,AD=OC(1)求证:四边形OCAD是平行四边形;(2)填空:当B= 时,四边形OCAD是菱形;当B= 时,AD与相切.2
9、5(10分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少? 26(12分)如图1,已知直线l:y=x+2与y轴交于点A,抛物线y=(x1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移
10、使顶点B落在直线l的点D处,点D的横坐标n(n1)(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a请写出a与n的函数关系式如图2,连接AC,CD,若ACD=90,求a的值27(12分)孙子算经是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣孙子算经记载“今有妇人河上荡杯津吏问曰:杯何以多?妇人曰:家有客津吏曰:客几何?妇人曰:二人共饭,三人共羹,四人共肉,凡用杯六十五不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”参考答案一、选择题(本大题共12个
11、小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】过B作直径,连接AC交AO于E,如图,根据已知条件得到BD=OB=2,如图,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论【详解】过B作直径,连接AC交AO于E,点B为的中点,BDAC,如图,点D恰在该圆直径上,D为OB的中点,BD=4=2,OD=OB-BD=2,四边形ABCD是菱形,DE=BD=1,OE=1+2=3,连接OC,CE=,在RtDEC中,由勾股定理得:DC=;如图,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故选C【点睛】
12、本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键2、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键3、D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程详解:设2016年的国内生产总值为1,2017
13、年国内生产总值(GDP)比2016年增长了12%,2017年的国内生产总值为1+12%;2018年比2017年增长7%, 2018年的国内生产总值为(1+12%)(1+7%),这两年GDP年平均增长率为x%, 2018年的国内生产总值也可表示为:,可列方程为:(1+12%)(1+7%)=故选D点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值4、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少
14、位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【详解】14400=1.441故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、D【解析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案【详解】点关于y轴对称的点的坐标为,故选:D【点睛】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.6、D【解析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度【详解】解:矩形ABCD的对角线AC
15、,BD相交于点O,BAD=90,点O是线段BD的中点,点M是AB的中点,OM是ABD的中位线,AD=2OM=1在直角ABD中,由勾股定理知:BD=故选:D【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键7、D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6x3=x3,C错误;=2,D正确;故选D点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除
16、法法则和算术平方根的定义是解题的关键8、D【解析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案【详解】解:Ax4x4=x4+4=x8x16,故该选项错误;B(a3)2=a32=a6a5,故该选项错误;C(ab2)3=a3b6ab6,故该选项错误;Da+2a=(1+2)a=3a,故该选项正确;故选D考点:1同底数幂的乘法;2积的乘方与幂的乘方;3合并同类项9、D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第
17、三边,并且等于第三边的一半10、A【解析】试题分析:设这个多边形的外角为x,则内角为3x,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数解:设这个多边形的外角为x,则内角为3x,由题意得:x+3x=180,解得x=45,这个多边形的边数:36045=8,故选A考点:多边形内角与外角11、A【解析】分析:根据三角形的外角得:BDA=A+AFD,AFD=A+CEA,代入已知可得结论.详解:由折叠得:A=A,BDA=A+AFD,AFD=A+CEA,A=,CEA=,BDA=,BDA=+=2+,故选A.点睛:本题考查了三角形外角的性质,熟练
18、掌握三角形的外角等于与它不相邻的两个内角的和是关键.12、A【解析】连接CC,将ADC沿AD折叠,使C点落在C的位置,ADC=30,ADC=ADC=30,CD=CD,CDC=ADC+ADC=60,DCC是等边三角形,DCC=60,在ABC中,AD是BC边的中线,即BD=CD,CD=BD,DBC=DCB=CDC=30,BCC=DCB+DCC=90,BC=4,BC=BCcosDBC=4=2,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键二、填空题:(本大题共6个小题,每小题4
19、分,共24分)13、1【解析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值【详解】由题意,s=1.2t2+60t=1.2(t250t+6161)=1.2(t1)2+750即当t=1秒时,飞机才能停下来故答案为1【点睛】本题考查了二次函数的应用解题时,利用配方法求得t=2时,s取最大值14、 (x3)(x3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).15、-x0【解析】根据反比例函数的性质:y随x的增大而减小去解答.【详解】解:函数y= 中,y随x的增大而减小,当函数y-3时又函数y= 中,故答案为:-x0.【点睛】此题重点考察学生对反比例函数
20、性质的理解,熟练掌握反比例函数性质是解题的关键.16、1【解析】试题分析:在RtACB中,C=90,AC=4,BC=3,由勾股定理得:AB=5,ABCEDB,BE=AC=4,AE=54=1.考点:全等三角形的性质;勾股定理17、十二【解析】首先根据内角度数计算出外角度数,再用外角和360除以外角度数即可【详解】一个正多边形的每个内角为150,它的外角为30,3603012,故答案为十二【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角18、【解析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解【详解】解:法一、=(- ) = = 2-m故答案为:2
21、-m法二、原式= =1-m+1=2-m故答案为:2-m【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)15人;(2)补图见解析.(3).【解析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人
22、数:640%=15人;(2)A2的人数为15264=3(人)补全图形,如图所示,A1所在圆心角度数为:360=48;(3)画出树状图如下:共6种等可能结果,符合题意的有3种选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键20、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1x50时,y=2x2+160x+4000;当50x90时,y=120x+12000,分别求出
23、各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元试题解析:解:(1)n与x成一次函数,设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-210+200=1(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1x50时,y=-2x2+160x+4000=-2(x-40)2+7200,-20,当x=40时,y有最大值,最大值是7200;当50x90时,y=-120x+12000,-1200,y随x增大而减小,即当x=50时,y的值最大,最
24、大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元21、官有200人,兵有800人【解析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论【详解】解:设官有x人,兵有y人,依题意,得: ,解得: 答:官有200人,兵有800人【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.22、(1)k-1;(2)2;(3)k-1时,的值与k无关【解析】(1)由题意得该方
25、程的根的判别式大于零,列出不等式解答即可.(2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.(3)结合(1)和(2)结论可见,k-1时,的值为定值2,与k无关【详解】(1)方程有两个不等实根,0,即4+4k0,k-1 (2)由根与系数关系可知x1+x2=-2 ,x1x2=-k, (3)由(1)可知,k-1时,的值与k无关【点睛】本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.23、 (1)证明见解析;(2)或 【解析】(1)求出的值,再判断出其符号即可;(2)先求出x的值,再由方程的两个实数根都是整数,且m
26、是正整数求出m的值即可【详解】(1)依题意,得 , ,方程总有两个实数根 (2), , 方程的两个实数根都是整数,且是正整数,或或【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac的关系是解答此题的关键24、(1)证明见解析;(2) 30, 45【解析】试题分析:(1)根据已知条件求得OAC=OCA,AOD=ADO,然后根据三角形内角和定理得出AOC=OAD,从而证得OCAD,即可证得结论;(2)若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出即可求得AD与相切,根据切线的性质得出根据ADOC,内错角相等得出从而求得试题解析:(
27、方法不唯一)(1)OA=OC,AD=OC,OA=AD,OAC=OCA,AOD=ADO,ODAC,OAC=AOD,OAC=OCA=AOD=ADO,AOC=OAD,OCAD,四边形OCAD是平行四边形;(2)四边形OCAD是菱形,OC=AC,又OC=OA,OC=OA=AC, 故答案为 AD与相切, ADOC, 故答案为25、(1)50(2)36(3)160【解析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最
28、喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数【详解】(1)该校对名学生进行了抽样调查本次调查中,最喜欢篮球活动的有人,最喜欢篮球活动的人数占被调查人数的(3),人,人答:估计全校学生中最喜欢跳绳活动的人数约为人【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小26、(1)B(1,1);(2)y=(xn)2+2n(3)a=;a=+1.【解析】1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示
29、出点D的坐标后代入直线的解析式即可验证答案。(2) 根据两种不同的表示形式得到m和h之间的函数关系即可。点C作y轴的垂线, 垂足为E, 过点D作DFCE于点F, 证得ACECDF, 然后用m表示出点C和点D的坐标, 根据相似三角形的性质求得m的值即可。【详解】解:(1)当x=0时候,y=x+2=2,A(0,2),把A(0,2)代入y=(x1)2+m,得1+m=2m=1y=(x1)2+1,B(1,1)(2)由(1)知,该抛物线的解析式为:y=(x1)2+1,D(n,2n),则平移后抛物线的解析式为:y=(xn)2+2n故答案是:y=(xn)2+2n(3)C是两个抛物线的交点,点C的纵坐标可以表示
30、为:(a1)2+1或(an)2n+2由题意得(a1)2+1=(an)2n+2,整理得2an2a=n2nn1a=过点C作y轴的垂线,垂足为E,过点D作DFCE于点FACD=90,ACE=CDF又AEC=DFCACECDF=又C(a,a22a+2),D(2a,22a),AE=a22a,DF=m2,CE=CF=a=a22a=1解得:a=+1n1a=a=+1【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。27、x=60【解析】设有x个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x个客人,则 解得:x=60;有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键