2022-2023学年广东省博罗中学高考数学一模试卷含解析.doc

上传人:茅**** 文档编号:87796561 上传时间:2023-04-17 格式:DOC 页数:16 大小:1.66MB
返回 下载 相关 举报
2022-2023学年广东省博罗中学高考数学一模试卷含解析.doc_第1页
第1页 / 共16页
2022-2023学年广东省博罗中学高考数学一模试卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2022-2023学年广东省博罗中学高考数学一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省博罗中学高考数学一模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD

2、2设数列是等差数列,.则这个数列的前7项和等于( )A12B21C24D363下列选项中,说法正确的是( )A“”的否定是“”B若向量满足 ,则与的夹角为钝角C若,则D“”是“”的必要条件4已知数列的前项和为,且,则的通项公式( )ABCD5已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D66已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD7已知空间两不同直线、,两不同平面,下列命题正确的是( )A若且,则B若且,则C若

3、且,则D若不垂直于,且,则不垂直于8如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近( )ABCD9已知命题若,则,则下列说法正确的是( )A命题是真命题B命题的逆命题是真命题C命题的否命题是“若,则”D命题的逆否命题是“若,则”10设,是非零向量.若,则( )ABCD11设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为( )ABCD12某四棱锥的三视图如图所示,该几何体的体积是( )A8BC4D二、填空题:本题共4小题,每小题5分,共20分。13

4、根据如图的算法,输出的结果是_.14已知向量,且 ,则实数的值是_15已知满足且目标函数的最大值为7,最小值为1,则_16已知数列满足对任意,若,则数列的通项公式_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C(1)求cosC的值;(2)若a3,c,求ABC的面积18(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.19(12分)已知函数,(1)当时,求不等式的解集; (2)若函数的图象与轴恰好围成一个直角三角形,求的值20(12分)

5、在中,、的对应边分别为、,已知,.(1)求;(2)设为中点,求的长.21(12分)已知点,若点满足.()求点的轨迹方程; ()过点的直线与()中曲线相交于两点,为坐标原点, 求面积的最大值及此时直线的方程.22(10分)设函数(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【

6、点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.2、B【解析】根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,所以,即,又,所以,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.3、D【解析】对于A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2bm2,但是ab不一定成立;对于D根据元素与集合的关系即可做出判断【详解】选项A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,因此A不正确

7、;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2bm2,但是ab不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.4、C【解析】利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.5、C【解析】根据题意

8、,将a、b代入,利用基本不等式求出最小值即可.【详解】a0,b0,a+b=1,当且仅当时取“”号答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.6、A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是

9、蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.7、C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;

10、答案D中直线也有可能垂直于直线,故不正确应选答案C8、A【解析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题9、B【解析】解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得

11、出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误故选:B【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.10、D【解析】试题分析:由题意得:若,则;若,则由可知,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:利用已知条件,结合平面几何知

12、识及向量数量积的基本概念直接求解(较易);将条件通过向量的线性运算进行转化,再利用求解(较难);建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.11、C【解析】如图所示:切点为,连接,作轴于,计算,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,故,在中,故,故,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.12、D【解析】根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积【详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数

13、据知,该四棱锥底面为对角线为2的正方形,高为PA=2,四棱锥的体积为.故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、55【解析】根据该For语句的功能,可得,可得结果【详解】根据该For语句的功能,可得则故答案为:55【点睛】本题考查For语句的功能,属基础题.14、【解析】=(1,2),=(x,1),则=+2=(1,2)+2(x,1)=(1+2x,4),=2=2(1,2)(x,1)=(2x,3),3(1+2x)4(2x)=1,解得:x=点睛:由向量的数乘和坐标加减法运算求得

14、,然后利用向量共线的坐标表示列式求解x的值若=(a1,a2),=(b1,b2),则a1a2+b1b2=1,a1b2a2b1=1 15、-2【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可【详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,直线AB的方程是:,则,故答案为.【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题16、【解析】由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.【详解】由,得,数列是等比数列,首项为2,

15、公比为2,满足上式,.故答案为:.【点睛】本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)利用正弦定理对已知代数式化简,根据余弦定理求解余弦值;(2)根据余弦定理求出b1或b3,结合面积公式求解.【详解】(1)已知等式3sin2A+3sin2B4sinAsinB+3sin2C,利用正弦定理化简得:3a2+3b23c24ab,即a2+b2c2ab,cosC;(2)把a3,c,代入3a2+3b23c24ab得:b1或b3,cosC,C为三角形内角,sinC

16、,SABCabsinC3bb,则ABC的面积为或【点睛】此题考查利用正余弦定理求解三角形,关键在于熟练掌握正弦定理进行边角互化,利用余弦定理求解边长,根据面积公式求解面积.18、(1)单调递增区间为,单调递减区间为;(2)【解析】(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,递增,当时,递减.故的单调递增区间为,单调递减区间为.(2),设的根为,即有可得,当时,递减,当时,递增.,所以,当;当时,设,递增,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函

17、数的极值或最值来处理.19、(1) (2)【解析】(1)当时,由可得,(所以,解得,所以不等式的解集为 (2)由题可得,因为函数的图象与轴恰好围成一个直角三角形,所以,解得,当时,函数的图象与轴没有交点,不符合题意;当时,函数的图象与轴恰好围成一个直角三角形,符合题意综上,可得20、(1);(2).【解析】(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解【详解】解:(1),且,由正弦定理,锐角,(2),在中,由余弦定理得【点睛】本题主要考查了正弦定理和余弦定理的运用考查了学生对三角函数基础知识的综合运用21、();()面积的最大值为,此时直线的

18、方程为.【解析】(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用(表示原点到直线的距离)表示面积,最后利用基本不等式求解最值.【详解】解:()由定义法可得,点的轨迹为椭圆且,. 因此椭圆的方程为. ()设直线的方程为与椭圆交于点, ,联立直线与椭圆的方程消去可得,即,. 面积可表示为令,则,上式可化为,当且仅当,即时等号成立,因此面积的最大值为,此时直线的方程为.【点睛】常见的利用定义法求解曲线的轨迹方程问题:(1)已知点,若点满足且,则的轨迹是椭圆;(2)已知点,若点满足且,则的轨迹是双曲线.22、(1);(2).【解析】(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为,根据能成立思想可知,由此构造不等式求得结果.【详解】(1)当时,可化为,由,解得;由,解得;由,解得综上所述:所以原不等式的解集为(2),有解,即,又,实数的取值范围是【点睛】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁