2022-2023学年吉林省长春市三中高三二诊模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:87796391 上传时间:2023-04-17 格式:DOC 页数:17 大小:1.61MB
返回 下载 相关 举报
2022-2023学年吉林省长春市三中高三二诊模拟考试数学试卷含解析.doc_第1页
第1页 / 共17页
2022-2023学年吉林省长春市三中高三二诊模拟考试数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年吉林省长春市三中高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省长春市三中高三二诊模拟考试数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若数列为等差数列,且满足,为数列的前项和,则( )ABCD2某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,

2、“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A8种B12种C16种D20种3已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()ABCD4已知整数满足,记点的坐标为,则点满足的概率为( )ABCD5已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )ABC3D46设,则( )ABCD7设i是虚数单位,若复数()是纯虚数,则m的值为( )ABC1D38一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( )ABCD9若的展开式中的

3、系数为150,则( )A20B15C10D2510已知数列满足,且 ,则数列的通项公式为( )ABCD11已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )ABCD12在复平面内,复数(为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13满足约束条件的目标函数的最小值是 . 14如图梯形为直角梯形,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_15若的展开式中各项系数之和为32,则展开式中x的系数为_16若,则_.三、解答题:共70分。解答应写出文字

4、说明、证明过程或演算步骤。17(12分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.18(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立月总

5、成本与月产量之间的回归方程;通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:参考数据:,.参考公式:相关系数,.19(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.20(12分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比

6、例是5:3.(1)填写下面列联表,并根据联表判断是否有的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记为参加会议的人中喜欢古典文学的人数,求5的分布列及数学期望附表及公式:.21(12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调

7、查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值: 0.100.050

8、.0250.0100.0050.001 2.7063.8415.0246.6357.87910.82822(10分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用等差数列性质,若,则 求出,再利用等差数列前项和公式得【详解】解:因为 ,由等差数列性质,若,则得,为数列的前项和,则故选:【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则 (2)要注意等差数列前项和公式的灵活应用,如.

9、2、C【解析】分两类进行讨论:物理和历史只选一门;物理和历史都选,分别求出两种情况对应的组合数,即可求出结果.【详解】若一名学生只选物理和历史中的一门,则有种组合;若一名学生物理和历史都选,则有种组合;因此共有种组合.故选C【点睛】本题主要考查两个计数原理,熟记其计数原理的概念,即可求出结果,属于常考题型.3、A【解析】利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,则的渐近线方程为故选A【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.4、D【解析】列出所有圆内的整数

10、点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.5、A【解析】根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平6、D【解析】

11、集合是一次不等式的解集,分别求出再求交集即可【详解】,则故选【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题7、A【解析】根据复数除法运算化简,结合纯虚数定义即可求得m的值.【详解】由复数的除法运算化简可得,因为是纯虚数,所以,故选:A.【点睛】本题考查了复数的概念和除法运算,属于基础题.8、A【解析】作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,平面,且,这个四棱锥中最长棱的长度是故选【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题9、C【解析】通过二项

12、式展开式的通项分析得到,即得解.【详解】由已知得,故当时,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.10、D【解析】试题分析:因为,所以,即,所以数列是以为首项,公比为的等比数列,所以,即,所以数列的通项公式是,故选D考点:数列的通项公式11、A【解析】先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.12、D【解析】将复数化简得,即可得到对应的点为,即可得出结

13、果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】可行域是如图的菱形ABCD,代入计算,知为最小.14、【解析】联立直线与抛物线方程求出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【详解】解:联立解得或,即,故答案为:【点睛】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.15、2025【解析】利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开

14、式的通项公式,求得展开式中的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【点睛】本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.16、【解析】直接利用关系式求出函数的被积函数的原函数,进一步求出的值【详解】解:若,则,即,所以故答案为:【点睛】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)存在,【解析】(1)将点代入椭圆方程得到,结合基本不等

15、式,求得取得最小值时,进而证得椭圆的离心率为.(2)当直线的斜率不存在时,根据椭圆的对称性,求得到直线的距离.当直线的斜率存在时,联立直线的方程和椭圆方程,写出韦达定理,利用,则列方程,求得的关系式,进而求得到直线的距离.根据上述分析判断出所求的圆存在,进而求得定圆的方程.【详解】(1)证明:椭圆经过点,当且仅当,即时,等号成立,此时椭圆的离心率.(2)解:椭圆的焦距为2,又,.当直线的斜率不存在时,由对称性,设,.,在椭圆上,到直线的距离.当直线的斜率存在时,设的方程为.由,得,.设,则,.,即,到直线的距离.综上,到直线的距离为定值,且定值为,故存在定圆:,使得圆与直线总相切.【点睛】本小

16、题主要考查点和椭圆的位置关系,考查基本不等式求最值,考查直线和椭圆的位置关系,考查点到直线的距离公式,考查分类讨论的数学思想方法,考查运算求解能力,属于中档题.18、(1)见解析;(2)3.386(万元)【解析】(1)利用代入数值,求出后即可得解;(2)计算出、后,利用求出后即可得解;把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,说明与正相关,且相关性很强.(2)由已知求得,所以,所求回归直线方程为.当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.19、(1)见解析(2)见解析【解析】

17、(1)利用导函数的正负确定函数的增减.(2) 函数在有两个零点,即方程在区间有两解, 令通过二次求导确定函数单调性证明参数范围.【详解】解:(1)证明:因为, 当时,所以在区间递减;当时,所以,所以在区间递增; 且,所以函数的极小值点为1(2)函数在有两个零点,即方程在区间有两解, 令,则令,则,所以在单调递增, 又, 故存在唯一的,使得, 即, 所以在单调递减,在区间单调递增,且, 又因为,所以, 方程关于的方程在有两个零点,由的图象可知,即.【点睛】本题考查利用导数研究函数单调性,确定函数的极值,利用二次求导,零点存在性定理确定参数范围,属于难题.20、(1)见解析,没有(2)见解析,【解

18、析】(1)根据题目所给数据填写列联表,计算出的值,由此判断出没有的把握认为喜欢阅读中国古典文学与性别有关系.(2)先判断出的所有可能取值,然后根据古典概型概率计算公式,计算出分布列并求得数学期望.【详解】(1)男生女生总计喜欢阅读中国古典文学423072不喜欢阅读中国古典文学301848总计7248120所以,没有的把握认为喜欢阅读中国古典文学与性别有关系.(2)设参加座谈会的男生中喜欢中国古典文学的人数为,女生中喜欢古典文学的人数为,则.且;.所以的分布列为则.【点睛】本小题主要考查列联表独立性检验,考查随机变量分布列和数学期望的求法,考查数据处理能力,属于中档题.21、(1)列联表见解析,

19、有;(2)分布列见解析, .【解析】(1)由频率分布直方图可得分数在、之间的学生人数,可得列联表.根据列联表计算的值,结合参考临界值表可得到结论;(2)从该校高一学生中随机抽取1人,求出该人为“文科方向”的概率.由题意,求出分布列,根据公式求出期望和方差.【详解】(1)由频率分布直方图可得分数在之间的学生人数为,在之间的学生人数为,所以低于60分的学生人数为120.因此列联表为理科方向文科方向总计男8030110女405090总计12080200又,所以有99%的把握认为是否为“文科方向”与性别有关.(2)易知从该校高一学生中随机抽取1人,则该人为“文科方向”的概率为.依题意知,所以(),所以

20、的分布列为0123P所以期望,方差.【点睛】本题考查独立性检验,考查离散型随机变量的分布列、期望和方差,属于中档题.22、(1)(2)【解析】(1)当时,不等式可化为:,再利用绝对值的意义,分,讨论求解.(2)根据可得,得到函数的图象与两坐标轴的交点坐标分别为,再利用三角形面积公式由求解.【详解】(1)当时,不等式可化为:当时,不等式化为,解得:当时,不等式化为,解得:,当时,不等式化为解集为,综上,不等式的解集为.(2)由题得,所以函数的图象与两坐标轴的交点坐标分别为,的面积为,由,得(舍),或,所以,参数的取值范围是.【点睛】本题主要考查绝对值不等式的解法和绝对值函数的应用,还考查分类讨论的思想和运算求解的能力,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁