《2022-2023学年安徽省合肥市第一六八中学中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省合肥市第一六八中学中考数学模拟预测题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,经过测量,C地在A地北偏东46方向上,同时C地在B地北偏西63方向上,则C的度数为()A99B
2、109C119D1292下列各式计算正确的是( )Aa22a33a5Baa2a3Ca6a2a3D(a2)3a53如图,AB是O的直径,AB8,弦CD垂直平分OB,E是弧AD上的动点,AFCE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为()A4+3B4+C+D+34在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A平均数为160B中位数为158C众数为158D方差为20.35对于数据:6,3,4,7,6,0,1下列判断中正确的是( )A这组数据的平均数是6,中位数是6B这组
3、数据的平均数是6,中位数是7C这组数据的平均数是5,中位数是6D这组数据的平均数是5,中位数是76如图,在RtABC中,ACB=90,CDAB,垂足为D,AB=c,A=,则CD长为()Acsin2Bccos2CcsintanDcsincos7如图,已知在RtABC中,ABC=90,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;A=EBA;EB平分AED;ED=AB中,一定正确的是( )ABCD8计算x2y(2x+y)的结果为()A3xyB3x3yCx3yDxy9下列图形中,既是中心
4、对称,又是轴对称的是()ABCD10如图,正六边形ABCDEF内接于O,半径为4,则这个正六边形的边心距OM的长为()A2B2CD411某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为( )A10=B+10=C10=D+10=12如图,ADBECF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB1,BC3,DE2,则EF的长为()A4B.5C6D8二、填空题:(本大题共6个小题,每小题
5、4分,共24分)13一个圆锥的三视图如图,则此圆锥的表面积为_14分解因式:_15如图,在ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_16如图,在每个小正方形的边长为1的网格中,A,B为格点()AB的长等于_()请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且ABC的面积等于,并简要说明点C的位置是如何找到的_17如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,则的值为_18半径为2的圆中,60的圆心角所对的弧的弧长为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演
6、算步骤19(6分)如图所示,点B、F、C、E在同一直线上,ABBE,DEBE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE20(6分)为厉行节能减排,倡导绿色出行,今年3月以来“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街
7、区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值21(6分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下成绩/分1201111101011009190以下成绩等级ABCD请根据以上信息解答下列问题:(1)这次统计共抽取了 名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高4
8、0%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?22(8分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式23(8分)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数61012棱数912面数58观察上表中的结果,你能发现、之间有什么关系吗?请写出关系式.24(10分)计算:|+(2017)02sin30+3125(10分)已知:如图,E是BC上一点,ABEC
9、,ABCD,BCCD求证:ACED26(12分)在ABC中,BAC=90,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使DAE=90,连接CE探究:如图,当点D在线段BC上时,证明BC=CE+CD应用:在探究的条件下,若AB=,CD=1,则DCE的周长为 拓展:(1)如图,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为 (2)如图,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 27(12分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、
10、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】方向角是从正北或正南方向到目标方向所形成的小于90
11、的角,根据平行线的性质求得ACF与BCF的度数,ACF与BCF的和即为C的度数【详解】解:由题意作图如下DAC=46,CBE=63,由平行线的性质可得ACF=DAC=46,BCF=CBE=63,ACB=ACF+BCF=46+63=109,故选B【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键2、B【解析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解【详解】A.a2与2a3不是同类项,故A不正确;B.aa2a3,正确;C原式a4,故C不正确;D原式a6,故D不正确;故选:B【
12、点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.3、A【解析】连AC,OC,BC线段CF扫过的面积扇形MAH的面积+MCH的面积,从而证明即可解决问题【详解】如下图,连AC,OC,BC,设CD交AB于H,CD垂直平分线段OB,COCB,OCOB,OCOBBC,AB是直径,点F在以AC为直径的M上运动,当E从A运动到D时,点F从A运动到H,连接MH,MAMH,CF扫过的面积为,故选:A【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.4、D【解析】解:A平均数为(158+160+154+158+170)5=160,正
13、确,故本选项不符合题意;B按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D这组数据的方差是S2=(154160)2+2(158160)2+(160160)2+(170160)2=28.8,错误,故本选项符合题意故选D点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大5、C【解析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数【详解】对于数据:6,3,4,7,6,0,1,
14、这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是: 中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.6、D【解析】根据锐角三角函数的定义可得结论.【详解】在RtABC中,ACB=90,AB=c,A=a,根据锐角三角函数的定义可得sin= ,BC=csin,A+B=90,DCB+B=90,DCB=A=在RtDCB中,CDB=90,cosD
15、CB= ,CD=BCcos=csincos,故选D7、B【解析】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,D为BC的中点,PD垂直平分BC,EDBC正确.ABC=90,PDAB.E为AC的中点,EC=EA,EB=EC.A=EBA正确;EB平分AED错误;ED=AB正确.正确的有.故选B考点:线段垂直平分线的性质.8、C【解析】原式去括号合并同类项即可得到结果【详解】原式,故选:C【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.9、C【解析】根据中心对称图形,轴对称图形的定义进行判断【详解】A、是中心对称图形,不是
16、轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形,轴对称图形的判断关键是根据图形自身的对称性进行判断10、B【解析】分析:连接OC、OB,证出BOC是等边三角形,根据锐角三角函数的定义求解即可详解:如图所示,连接OC、OB多边形ABCDEF是正六边形,BOC=60,OC=OB,BOC是等边三角形,OBM=60,OM=OBsinOBM=42.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的
17、性质,由三角函数求出OM是解决问题的关键11、B【解析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可【详解】解:设第一批购进x件衬衫,则所列方程为:+10=故选B【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键12、C【解析】解:ADBECF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、55cm2【解析】由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.【详解】由三视图可知,半径为5cm,圆锥母线长为6cm,表面积=56+52=55cm2,故答案为: 55cm2
18、.【点睛】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=rl+r2.14、 (a+1)(a-1)【解析】根据平方差公式分解即可.【详解】(a+1)(a-1).故答案为:(a+1)(a-1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.15、【解析】解:令AE=4x,BE=3x,AB=7x.四边形ABCD为平行四边形,CD=AB=7
19、x,CDAB,BEFDCF. ,DF=【点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.16、 取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求 【解析】()利用勾股定理计算即可;()取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【详解】解:()AB= =,故答案为()如图取格点P、N(使得SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求故答案为:取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分
20、线EF交PN于点C,点C即为所求【点睛】本题考查作图应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型17、【解析】过点B作BFOC于点F,易证SOAE=S四边形DEBF=,SOAB=S四边形DABF,因为,所以,又因为ADBF,所以SBCFSACD,可得BF:AD=2:5,因为SOAD=SOBF,所以ODAD =OFBF,即BF:AD=2:5= OD:OF,易证:SOEDSOBF,SOED:SOBF=4:25,SOED:S四边形EDFB=4:21,所以SOED= ,SOBF= SOED+ S四边形EDFB=+=, 即可得解:k=2
21、 SOBF=.【详解】解:过点B作BFOC于点F,由反比例函数的比例系数|k|的意义可知:SOAD=SOBF,SOAD- SOED =SOBF一SOED,即SOAE=S四边形DEBF=,SOA B=S四边形DABF,ADBFSBCFSACD,又,BF:AD=2:5,SOAD=SOBF,ODAD =OFBFBF:AD=2:5= OD:OF易证:SOEDSOBF,SOED:SOBF=4:25,SOED:S四边形EDFB=4:21S四边形EDFB=,SOED= ,SOBF= SOED+ S四边形EDFB=+=, k=2 SOBF=.故答案为.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题
22、关键是熟练运用相似三角形的判定定理和性质定理.18、【解析】根据弧长公式可得:=,故答案为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、证明见解析【解析】试题分析:证明三角形ABCDEF,可得.试题解析:证明:,BC=EF,,B=E=90,AC=DF,ABCDEF, AB=DE.20、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,x+10=80,答:A、B两型自行车的单价分别是70元和80元;问
23、题2:由题可得,1000+1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为121、(1)1人;补图见解析;(2)10人;(3)610名.【解析】(1)用总人数乘以A所占的百分比,即可得到总人数;再用总人数乘以A等级人数所占比例可得其人数,继而根据各等级人数之和等于总人数可得D等级人数,据此可补全条形图;(2)用总人数乘以(A的百分比+B的百分比),即可解答;(3)先计算出提高后A,B所占的百分比,再乘以总人数,即可解答【详解】解:(1)本次调查抽取的总人数为15=1(人),则A等级人数为1=10(人),D等级人数为1(10+15+5)=20(人),补全直方图如下:故答
24、案为1(2)估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有1000=10(人);(3)A级学生数可提高40%,B级学生数可提高10%,B级学生所占的百分比为:30%(1+10%)=33%,A级学生所占的百分比为:20%(1+40%)=28%,1000(33%+28%)=610(人),估计经过训练后九年级数学成绩在B以上(含B级)的学生可达610名【点睛】考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1).(2).【解析】试题分析:(1)根据取
25、出黑球的概率=黑球的数量球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式试题解析:(1)取出一个黑球的概率(2)取出一个白球的概率与的函数关系式为:考点:概率23、8,15,18,6,7;【解析】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n棱柱的关系,可知n棱柱一定有(n+1)个面,1n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系详解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681011棱数b9111518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+1个面
26、,共有1n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=1点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+1)个面,1n个顶点和3n条棱是解题关键24、 【解析】分析:化简绝对值、0次幂和负指数幂,代入30角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可详解:原式=+12+=点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键25、见解析【解析】试题分析:已知ABCD,根据两直线平
27、行,内错角相等可得B=ECD,再根据SAS证明ABCECD全,由全等三角形对应边相等即可得AC=ED试题解析:ABCD,B=DCE在ABC和ECD中,ABCECD(SAS),AC=ED考点:平行线的性质;全等三角形的判定及性质26、探究:证明见解析;应用:;拓展:(1)BC= CD-CE,(2)BC= CE-CD【解析】试题分析:探究:判断出BAD=CAE,再用SAS即可得出结论;应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;拓展:(1)同探究的方法得出ABDACE,得出BD=CE,即可得出结论;(2)同探究的方法得出ABDACE,得出BD=CE,即可得出结论试题解析:探
28、究:BAC=90,DAE=90,BAC=DAEBAC=BAD+DAC,DAE=CAE+DAC,BAD=CAEAB=AC,AD=AE,ABDACEBD=CEBC=BD+CD,BC=CE+CD应用:在RtABC中,AB=AC=,ABC=ACB=45,BC=2,CD=1,BD=BC-CD=1,由探究知,ABDACE,ACE=ABD=45,DCE=90,在RtBCE中,CD=1,CE=BD=1,根据勾股定理得,DE=,DCE的周长为CD+CE+DE=2+故答案为2+拓展:(1)同探究的方法得,ABDACEBD=CEBC=CD-BD=CD-CE,故答案为BC=CD-CE;(2)同探究的方法得,ABDACEBD=CEBC=BD-CD=CE-CD,故答案为BC=CE-CD27、(1)600(2)见解析(3)3200(4)【解析】(1)6010%=600(人)答:本次参加抽样调查的居民有600人(2分)(2)如图;(5分)(3)800040%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人(7分)(4)如图;(列表方法略,参照给分)(8分)P(C粽)=答:他第二个吃到的恰好是C粽的概率是(10分)