2022-2023学年天津市红桥区第二区重点中学十校联考最后数学试题含解析.doc

上传人:茅**** 文档编号:87796339 上传时间:2023-04-17 格式:DOC 页数:19 大小:887.50KB
返回 下载 相关 举报
2022-2023学年天津市红桥区第二区重点中学十校联考最后数学试题含解析.doc_第1页
第1页 / 共19页
2022-2023学年天津市红桥区第二区重点中学十校联考最后数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年天津市红桥区第二区重点中学十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年天津市红桥区第二区重点中学十校联考最后数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A圆锥形冰淇淋纸套的底面半径为4cmB圆锥形冰淇淋纸套的底面半径为6cmC圆锥形冰淇淋纸套的高为D圆锥形冰淇淋纸套的高为2在RtABC中,C=90,

2、如果sinA=,那么sinB的值是()ABCD3如图,半O的半径为2,点P是O直径AB延长线上的一点,PT切O于点T,M是OP的中点,射线TM与半O交于点C若P20,则图中阴影部分的面积为()A1+B1+C2sin20+D4在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )ABCD5对于函数y=,下列说法正确的是()Ay是x的反比例函数B它的图象过原点C它的图象不经过第三象限Dy随x的增大而减小6如图,菱形ABCD的对角线相交于点O,过点D作DEAC, 且DE=AC,连接CE、OE,连接AE,交OD于点F

3、,若AB=2,ABC=60,则AE的长为()ABCD7如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D458若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()Am1Bm1Cm1Dm19如图,在中,,点分别在上,于,则的面积为( )ABCD10若关于的一元二次方程的一个根是0,则的值是( )A1B-1C1或-1D117的相反数是( )A7B7CD12在-,0,2这四个数中,最小的数是( )ABC0D2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一

4、个宽为5cm的长条,且剪下的两个长条的面积相等问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_14关于x的分式方程有增根,则m的值为_15如图,中,平分,与相交于点,则的长等于_.16如图,点A是双曲线y在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且ACB120,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为_17分解因式:2x28=_18已知 x(x+1)x+1,则x_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)计算:(3.14)0+|1|

5、2sin45+(1)120(6分)如图,在平面直角坐标系xOy中,函数的图象与直线y2x+1交于点A(1,m).(1)求k、m的值;(2)已知点P(n,0)(n1),过点P作平行于y轴的直线,交直线y2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.当n3时,求线段AB上的整点个数;若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.21(6分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去于是爸爸和小芳马上

6、按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:(1)小芳和爸爸上山时的速度各是多少?(2)求出爸爸下山时CD段的函数解析式;(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?22(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在地时距地面的

7、高度为 米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式(3)登山多长时间时,甲、乙两人距地面的高度差为50米?23(8分)(1)计算:|3|+(+)0()22cos60;(2)先化简,再求值:()+,其中a=2+24(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”例如图1,图2,图1中,AF,BE是ABC的中线,AFBE,垂足为P,像ABC这样的三角形均为“中垂三角形”设BCa,ACb,ABc特例探索(1)如图1,当ABE45,c时,a ,b ;如图2,当ABE10,c4时,a ,b ;归纳证明(2

8、)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在ABCD中,点E,F,G分别是AD,BC,CD的中点,BEEG,AD,AB1求AF的长25(10分)先化简,再求值:,其中m是方程x22x30的根26(12分)(1)计算:(2)2+cos60(2)0;(2)化简:(a) 27(12分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元(1)求购进甲、乙两种纪念品每件各需多少元?(2)若

9、该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高【详解】解:半径为12cm,圆心角为的扇形弧长是:,设圆锥的底面半

10、径是rcm,则,解得:即这个圆锥形冰淇淋纸套的底面半径是2cm圆锥形冰淇淋纸套的高为故选:C【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键2、A【解析】RtABC中,C=90,sinA=,cosA=,A+B=90,sinB=cosA=故选A3、A【解析】连接OT、OC,可求得COM=30,作CHAP,垂足为H,则CH=1,于是,S阴影=SAOC+S扇形OCB,代入可得结论【详解】连接OT、OC,PT切O于点T,OTP=90,P=2

11、0,POT=70,M是OP的中点,TM=OM=PM,MTO=POT=70,OT=OC,MTO=OCT=70,OCT=180-270=40,COM=30,作CHAP,垂足为H,则CH=OC=1,S阴影=SAOC+S扇形OCB=OACH+=1+,故选A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系4、B【解析】根据矩形的面积=长宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)(风景画的宽+2个纸边的宽度)=整个

12、挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为,得出方程:(80+2x)(50+2x)=5400,整理后得:故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.5、C【解析】直接利用反比例函数的性质结合图象分布得出答案【详解】对于函数y=,y是x2的反比例函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键

13、6、C【解析】在菱形ABCD中,OC=AC,ACBD,DE=OC,DEAC,四边形OCED是平行四边形,ACBD,平行四边形OCED是矩形,在菱形ABCD中,ABC=60,ABC为等边三角形,AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在RtACE中,由勾股定理得:AE=;故选C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出COD=90,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.7、A【解析】根据ABD35就可以求出的度数,再根据,可以求出 ,因此就可以求得

14、的度数,从而求得DBC【详解】解:ABD35,的度数都是70,BD为直径,的度数是18070110,点A为弧BDC的中点,的度数也是110,的度数是110+11018040,DBC20,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力8、C【解析】将关于x的一元二次方程化成标准形式,然后利用0,即得m的取值范围.【详解】因为方程是关于x的一元二次方程方程,所以可得,4+4m 0,解得m1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.9、C【解析】先利用三角函数求出BE=4m,同(1)的方法判断出1=3,进而得出ACQCEP,得出比例式求出PE

15、,最后用面积的差即可得出结论;【详解】,CQ=4m,BP=5m,在RtABC中,sinB=,tanB=,如图2,过点P作PEBC于E,在RtBPE中,PE=BPsinB=5m=3m,tanB=,BE=4m,CE=BC-BE=8-4m,同(1)的方法得,1=3,ACQ=CEP,ACQCEP, , ,m=,PE=3m=,SACP=SACB-SPCB=BCAC-BCPE=BC(AC-PE)=8(6- )=,故选C.【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出ACQCEP是解题的关键10、B【解析】根据一元二次方程的解的定义把x=0代入方程得到关于a的一

16、元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=1原方程是一元二次方程,所以,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解11、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.12、D【解析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】在,0,1这四个数中,10,故最小的数为:1故选D【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数

17、的大小比较.二、填空题:(本大题共6个小题,每小题4分,共24分)13、4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x4).14、1【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.15、3【解析】如图,延长CE、DE,分别交AB于G、H,由BAD=ADE=60可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CGAB,可求出AG的长,进而可得GH的长,根据含30角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解

18、】如图,延长CE、DE,分别交AB于G、H,BAD=ADE=60,ADH是等边三角形,DH=AD=AH=5,DHA=60,AC=BC,CE平分ACB,ACB=90,AB=8,AG=AB=4,CGAB,GH=AH=AG=5-4=1,DHA=60,GEH=30,EH=2GH=2DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30角的直角三角形的性质,熟记30角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.16、1【解析】根据题意得出AODOCE,进而得出,即可得出k=ECEO=1【详解】解:连接CO,过点A作ADx轴于点D,过

19、点C作CEx轴于点E,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且ACB=120,COAB,CAB=10,则AOD+COE=90,DAO+AOD=90,DAO=COE,又ADO=CEO=90,AODOCE, =tan60= ,= =1,点A是双曲线y=- 在第二象限分支上的一个动点,SAOD=|xy|= ,SEOC= ,即OECE=,k=OECE=1,故答案为1【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出AODOCE是解题关键17、2(x+2)(x2)【解析】先提公因式,再运用平方差公式.【详解】2x28,=2(x24),=2(

20、x+2)(x2)【点睛】考核知识点:因式分解.掌握基本方法是关键.18、1或-1【解析】方程可化为:,或,或.故答案为1或-1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案【详解】原式【点睛】考核知识点:三角函数混合运算.正确计算是关键.20、(1)m3,k3;(2)线段AB上有(1,3)、(2,5)、(3,7)共3个整点,当2n3时,有五个整点.【解析】(1)将A点代入直线解析式可求m,再代入,可求k.(2)根据题意先求B,C两点,可得线段AB上的整点的横坐标的范

21、围1x3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.根据图象可以直接判断2n3.【详解】(1)点A(1,m)在y2x+1上,m21+13.A(1,3).点A(1,3)在函数的图象上,k3.(2)当n3时,B、C两点的坐标为B(3,7)、C(3,1).整点在线段AB上1x3且x为整数x1,2,3当x1时,y3,当x2时,y5,当x3时,y7,线段AB上有(1,3)、(2,5)、(3,7)共3个整点.由图象可得当2n3时,有五个整点.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.21、(1)小芳上山的速度为2

22、0m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x288(24x40);(3)二人互相看不见的时间有7.1分钟【解析】分析:(1)根据速度=路程时间可求出小芳上山的速度;根据速度=路程时间+小芳的速度可求出爸爸上山的速度;(2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐标,由点D的横坐标比点E少4可得出点D的坐标,再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;(3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论详解:(1)

23、小芳上山的速度为1206=20(m/min),爸爸上山的速度为120(216)+20=28(m/min)答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min(2)(2820)(24+621)=72(m),点C的坐标为(30,72);二人返回山下的时间相差4min,444=40(min),点D的坐标为(40,192)设爸爸下山时CD段的函数解析式为y=kx+b,将C(30,72)、D(40,192)代入y=kx+b,解得:答:爸爸下山时CD段的函数解析式为y=12x288(24x40)(3)设DE段的函数解析式为y=mx+n,将D(40,192)、E(44,0)代入y=mx+n,解

24、得:,DE段的函数解析式为y=48x+2112(40x44)当y=12x288120时,34x40;当y=48x+2112120时,40x41.141.134=7.1(min)答:二人互相看不见的时间有7.1分钟点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C、D的坐标,利用待定系数法求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围22、(1)10;1;(2);(3)4分钟、9分钟或3分钟【解析】(1)根据速度=高度时间即可算出甲登山

25、上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(10-100)20=10(米/分钟),b=312=1故答案为:10;1(2)当0x2时,y=3x;当x2时,y=1+103(x-2)=1x-1当y=1x-1=10时,x=2乙

26、登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程2

27、3、(1)-1;(2).【解析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案【详解】(1)原式=3+1(2)22=441=1;(2)原式=+=当a=2+时,原式=【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型24、(1)2,2;2,2;(2)+=5;(1)AF=2【解析】试题分析:(1)AFBE,ABE=25,AP=BP=AB=2,AF,BE是ABC的中线,EFAB,EF=AB=,PFE=PEF=25,PE=PF=1,在RtFPB和RtPEA中,AE=BF=,AC=BC=2,a

28、=b=2,如图2,连接EF,同理可得:EF=2=2,EFAB,PEFABP,在RtABP中,AB=2,ABP=10,AP=2,PB=2,PF=1,PE=,在RtAPE和RtBPF中,AE=,BF=,a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b2=5c2,如图1,连接EF,设ABP=,AP=csin,PB=ccos,由(1)同理可得,PF=PA=,PE=,AE2=AP2+PE2=c2sin2+,BF2=PB2+PF2=+c2cos2,=c2sin2+,=+c2cos2,+=+c2cos2+c2sin2+,a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,

29、设BE与AF的交点为P,点E、G分别是AD,CD的中点,EGAC,BEEG,BEAC,四边形ABCD是平行四边形,ADBC,AD=BC=2,EAH=FCH,E,F分别是AD,BC的中点,AE=AD,BF=BC,AE=BF=CF=AD=,AEBF,四边形ABFE是平行四边形,EF=AB=1,AP=PF,在AEH和CFH中,AEHCFH,EH=FH,EQ,AH分别是AFE的中线,由(2)的结论得:AF2+EF2=5AE2,AF2=5EF2=16,AF=2考点:相似形综合题25、原式=,当m=l时,原式=【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m

30、2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可解:原式=x2+2x-3=0, x1=-3,x2 =1m是方程x2 +2x-3=0的根, m=-3或m=1 m+30, .m-3, m=1 当m=l时,原式: “点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入26、(1);(2);【解析】(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题【详解】解:(1)原式 (2)原式 【点睛】本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值

31、、零指数幂,解答本题的关键是明确它们各自的计算方法27、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)若全部销售完,方案一获利最大,最大利润是1800元【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品

32、a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)设购进甲种纪念品a(a60)件,则购进乙种纪念品(80a)件由题意得:100a+50(80a)7100解得a1又a60所以a可取60、61、1即有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)设利润为W,则W=20a+30(80a)=10a+2400所以W是a的一次函数,100,W随a的增大而减小所以当a最小时,W最大此时W=1060+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁