《2022-2023学年江苏省高邮市三垛初中十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省高邮市三垛初中十校联考最后数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1的相反数是()AB-CD-2如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水
2、平距离(m)之间的函数关系式是( )ABCD3罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大如图是对某球员罚球训练时命中情况的统计:下面三个推断:当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1其中合理的是( )ABCD4二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同
3、一平面直角坐标系中的图象可能是()ABCD5如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( )ABCD6如图,已知直线,点E,F分别在、上,如果B40,那么( )A20B40C60D807若分式的值为0,则x的值为()A-2B0C2D28下列图形中,既是中心对称图形又是轴对称图形的是()ABCD9上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是() 12345成绩(m)8.28.08.27.57.8A8.2,8.2B8.0,8.2C8.2,7.8D8.2,8.010如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处
4、,测得树顶A的仰角ABO为,则树OA的高度为( )A米B30sin米C30tan米D30cos米11某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示其中阅读时间是810小时的频数和频率分别是( )A15,0.125B15,0.25C30,0.125D30,0.2512已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )ABCD二、填空题:(本大题共6个小题,每小题4分,
5、共24分)13如图,CB=CA,ACB=90,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FGCA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:AC=FG;SFAB:S四边形CBFG=1:2;ABC=ABF;AD2=FQAC,其中正确的结论的个数是_14将多项式因式分解的结果是 15(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是_16如图,正ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,ABO沿x轴正
6、方向作无滑动的翻滚,经第一次翻滚后得到A1B1O,则翻滚2017次后AB中点M经过的路径长为_17国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_18如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,称为“三角形数”;把1,4,9,16,25,称为“正方形数”. 将三角形、正方形、五边形都整齐的由左到右填
7、在所示表格里:三角形数136101521a正方形数1491625b49五边形数151222C5170(1)按照规律,表格中a=_,b=_,c=_(2)观察表中规律,第n个“正方形数”是_;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是_20(6分)如图,是的直径,是圆上一点,弦于点,且过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点(1)求证:与相切;(2)连接,求的值21(6分)如图,四边形ABCD内接于O,BD是O的直径,AECD于点E,DA平分BDE(1)求证:AE是O的切线;(2)如果AB=4,AE=2,求O的半径22(8分)如图所示,一艘轮船
8、位于灯塔P的北偏东方向与灯塔的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东方向上的B处.求此时轮船所在的B处与灯塔的距离.(结果保留根号)23(8分)如图,在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CFBC,求证:四边形OCFE是平行四边形24(10分)嘉兴市20102014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市20102014年社会消费品零售总额增速这组数据的中位数(2)求嘉兴市近三年(20122014年)的社会消费品零售总额这组数据的平均数(3)用适当的方法预测嘉兴市201
9、5年社会消费品零售总额(只要求列出算式,不必计算出结果)25(10分)如图,AD是ABC的中线,AD12,AB13,BC10,求AC长26(12分)如图,点A、B、C、D在同一条直线上,CEDF,EC=BD,AC=FD,求证:AE=FB27(12分)如图所示,ACB和ECD都是等腰直角三角形,ACBECD90,D为AB边上一点求证:ACEBCD;若AD5,BD12,求DE的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】+()=0,的相反数是故选B2、D【解析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可
10、【详解】解:根据图象,设函数解析式为由图象可知,顶点为(1,3),将点(0,0)代入得解得故答案为:D【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式3、B【解析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:4115000.822,但“罚球命中”的概率不一定是0.822,故错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2故正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概
11、率不是0.1,故错误故选:B【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.4、C【解析】试题分析:二次函数图象开口方向向下,a0,对称轴为直线0,b0,与y轴的正半轴相交,c0,的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合故选C考点:1二次函数的图象;2一次函数的图象;3反比例函数的图象5、B【解析】如图所示,过O点作a的平行线d,根据平行线的性质得到23,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,ad,由两直线平行同位角相等得到2350,木条c绕O点与直线d重合时,与直线a平行,旋转角1
12、290.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.6、C【解析】根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数【详解】,故选C【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等7、C【解析】由题意可知:,解得:x=2,故选C.8、D【解析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A. 此图形旋转180后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;B. 此图形旋转180后能与原图形重合,此图形是中
13、心对称图形,不是轴对称图形,故此选项错误;C. 此图形旋转180后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D. 此图形旋转180后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.9、D【解析】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1其中8.1出现1次,出现次数最多,8.2排在第三,这组数据的众数与中位数分别是:8.1,8.2故选D【点睛】本题考查众数;中位数10、C【解析】试题解析:在RtA
14、BO中,BO=30米,ABO为,AO=BOtan=30tan(米)故选C考点:解直角三角形的应用-仰角俯角问题11、D【解析】分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,一周内用于阅读的时间在8-10小时这组的频率=0.1252=0.25,又被调查学生总数为120人,一周内用于阅读的时间在8-10小时这组的频数=1200.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频
15、率;(2)要弄清各自的频数、频率和总数之间的关系.12、B【解析】根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.【详解】(1)当0x2时,BQ2x当2x4时,如下图 由上可知故选:B.【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】由正方形的性质得出FAD90,ADAFEF,证出CADAFG,由AAS证明FGAACD,得出ACFG,正确;证明四边形CBFG是矩形,得出SFABFBFGS四边形CBFG,正确;由等腰直角三角形的性质和矩形的性质得出
16、ABCABF45,正确;证出ACDFEQ,得出对应边成比例,得出正确【详解】解:四边形ADEF为正方形,FAD90,ADAFEF,CADFAG90,FGCA,GAFAFG90,CADAFG,在FGA和ACD中,FGAACD(AAS),ACFG,正确;BCAC,FGBC,ACB90,FGCA,FGBC,四边形CBFG是矩形,CBF90,SFABFBFGS四边形CBFG,正确;CACB,CCBF90,ABCABF45,正确;FQEDQBADC,EC90,ACDFEQ,AC:ADFE:FQ,ADFEAD2FQAC,正确;故答案为【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形
17、的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键14、m(m+n)(mn)【解析】试题分析:原式=m(m+n)(mn)故答案为:m(m+n)(mn)考点:提公因式法与公式法的综合运用15、10,【解析】解:如图,过点A作ADBC于点D,ABC边AB=AC=10,BC=12,BD=DC=6,AD=8,如图所示:可得四边形ACBD是矩形,则其对角线长为:10;如图所示:AD=8,连接BC,过点C作CEBD于点E,则EC=8,BE=2BD=12,则BC=;如图所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC=故答案为10
18、,16、(+896)【解析】由圆弧的弧长公式及正ABO翻滚的周期性可得出答案【详解】解:如图作x轴于E, 易知OE=5, ,观察图象可知3三次一个循环,一个循环点M的运动路径为=,翻滚2017次后AB中点M经过的路径长为,故答案:【点睛】本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键17、6.281【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】62800用科学记数法表示为6.281故答案
19、为6.281【点睛】此题主要考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值18、【解析】试题解析:两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,P(飞镖落在白色区域)=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1 2 3 n2 n2 +x-n 【解析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2
20、)、根据前面得出的一般性得出答案详解:(1)前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,第n个“三角形数”是, a=782=1782=1前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52,第n个“正方形数”是n2, b=62=2前4个“正方形数”分别是:1=,5=,12=,22=,第n个“五边形数”是n(3n1)2n(3n1)2, c=3(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,第n个“五边形数”是n2+x-n点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是
21、首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解探寻规律要认真观察、仔细思考,善用联想来解决这类问题20、(1)见解析;(2)【解析】(1)连接,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得1=30,由于可得DCG=CDA=60,即可求出OCG=90,可得与相切;(2)作于点设,则,根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值【详解】(1)连接,是的直径,弦于点,为等边三角形,DAE=EAC=30,OA=OC,OAC=OCA
22、=30,1=DCA-OCA=30,DCG=CDA=60,OCG=DCG+1=60+30=90,与相切(2)连接EF,作于点设,则,与相切,又,又,四边形为平行四边形,四边形为菱形,由(1)得,在中,【点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.21、(1)见解析;(1)O半径为【解析】(1)连接OA,利用已知首先得出OADE,进而证明OAAE就能得到AE是O的切线;(1)通过证明BADAED,再利用对应边成比例关系从而求出O半径的长【详解】解:(1)连接OA,OA=OD,1=1DA平
23、分BDE,1=21=2OADEOAE=4,AECD,4=90OAE=90,即OAAE又点A在O上,AE是O的切线(1)BD是O的直径,BAD=903=90,BAD=3又1=2,BADAED,BA=4,AE=1,BD=1AD在RtBAD中,根据勾股定理,得BD=O半径为22、海里【解析】过点P作,则在RtAPC中易得PC的长,再在直角BPC中求出PB【详解】解:如图,过点P作,垂足为点C.,海里.在中,(海里)在中,(海里).此时轮船所在的B处与灯塔P的距离是海里【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线23、证明见解析.【解析】利用三角形
24、中位线定理判定OEBC,且OE=BC结合已知条件CF=BC,则OE/CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论【详解】四边形ABCD是平行四边形,点O是BD的中点又点E是边CD的中点,OE是BCD的中位线,OEBC,且OE=BC又CF=BC,OE=CF又点F在BC的延长线上,OECF,四边形OCFE是平行四边形【点睛】本题考查了平行四边形的性质和三角形中位线定理此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理熟记相关定理并能应用是解题的关键.24、(115)这组数据的中位数为15.116%;(116)这组数据的平均数是11
25、5 11609.116亿元;(15)116016年社会消费品零售总额为115 15167(11515.116%)亿元【解析】试题分析:(115)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;(116)根据平均数的定义,求解即可;(15)根据增长率的中位数,可得116016年的销售额试题解析:解:(115)数据从小到大排列11516%,1165%,15116%,16115%,57%,则嘉兴市1160115116015年社会消费品零售总额增速这组数据的中位数是15116%;(116)嘉兴市近三年(1160116116015年)的社会消费品零售总额这组数据的平均数是:(616+
26、76+5157+99+11500)5=11575116(亿元);(15)从增速中位数分析,嘉兴市116016年社会消费品零售总额为1150(115+15116%)=16158116716(亿元)考点:115折线统计图;116条形统计图;15算术平均数;16中位数25、2.【解析】根据勾股定理逆定理,证ABD是直角三角形,得ADBC,可证AD垂直平分BC,所以AB=AC.【详解】解:AD是ABC的中线,且BC=10,BD=BC=112+122=22,即BD2+AD2=AB2,ABD是直角三角形,则ADBC,又CD=BD,AC=AB=2【点睛】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题
27、关键点:熟记相关性质,证线段相等.26、见解析【解析】根据CEDF,可得ECA=FDB,再利用SAS证明ACEFDB,得出对应边相等即可【详解】解:CEDFECA=FDB,在ECA和FDB中 ECAFDB,AE=FB【点睛】本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键27、(1)证明见解析(2)13【解析】(1)先根据同角的余角相等得到ACE=BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,EAC=B=45,即可证得AED是直角三角形,再利用勾股定理即可求出DE的长【详解】(1)ACB和ECD都是等腰直角三角形AC=BC,EC=DC,ACB=ECD=90ACE=DCE-DCA,BCD=ACB-DCAACE=BCDACEBCD(SAS);(2)ACB和ECD都是等腰直角三角形BAC=B=45ACEBCDAE=BD=12,EAC=B=45EAD=EAC+BAC=90,EAD是直角三角形【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.