《2022-2023学年内蒙古集宁一中高三第五次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年内蒙古集宁一中高三第五次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD2在棱长均相等的正三棱柱中,为的中
2、点,在上,且,则下述结论:;平面平面:异面直线与所成角为其中正确命题的个数为( )A1B2C3D43已知随机变量服从正态分布,且,则( )ABCD4已知向量,则( )ABC()D( )5胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为ABCD6等差数列的前项和为,若,则数列的公差为( )A-2B2C4D77为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为
3、( )ABCD8已知函数,当时,的取值范围为,则实数m的取值范围是( )ABCD9已知,如图是求的近似值的一个程序框图,则图中空白框中应填入ABCD10已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方向平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.ABCD11设等差数列的前项和为,若,则( )A23B25C28D2912给定下列四个命题:若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;若一个平面经过另一个平面的垂线,则这两个平面相互垂直;垂直于同一直线的两条直线相互平行;若两个平面垂直,那
4、么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是( )A和 B和 C和 D和二、填空题:本题共4小题,每小题5分,共20分。13直线过圆的圆心,则的最小值是_.14已知四棱锥,底面四边形为正方形,四棱锥的体积为,在该四棱锥内放置一球,则球体积的最大值为_15已知实数满足,则的最小值是_.16已知函数在处的切线与直线平行,则为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线:y22px(p0)的焦点为F,P是抛物线上一点,且在第一象限,满足(2,2)(1)求抛物线的方程;(2)已知经过点A(3,2)的直线交抛物线于M,N两点,经
5、过定点B(3,6)和M的直线与抛物线交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由18(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.19(12分)如图,在三棱柱中,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.20(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查调查后,就顾客“购物体验”的满意度统计如下:满意不满意男4040女8040(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?(2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动据统计,在
6、此期间顾客购买该商品的支付情况如下:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.22(10分)在平面直角坐标系xOy中,椭圆C:的右准线方程为x2,且
7、两焦点与短轴的一个顶点构成等腰直角三角形(1)求椭圆C的方程;(2)假设直线l:与椭圆C交于A,B两点若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;若原点O到直线l的距离为1,并且,当时,求OAB的面积S的范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当且仅当时取等号
8、,此时,点在以为焦点的椭圆上,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解2、B【解析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出的正误;判断是的中点推出正的误;利用直线与平面垂直推出平面与平面垂直推出正的误;建立空间直角坐标系求出异面直线与所成角判断的正误【详解】解:不妨设棱长为:2,对于连结,则,即与不垂直,又,不正确;对于,连结,在中,而,是的中点,所以,正确;对于由可知
9、,在中,连结,易知,而在中,即,又,面,平面平面,正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;, , , , ;, ;异面直线与所成角为,故不正确故选:【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力3、C【解析】根据在关于对称的区间上概率相等的性质求解【详解】,故选:C【点睛】本题考查正态分布的应用掌握正态曲线的性质是解题基础随机变量服从正态分布,则4、D【解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】向量(1,
10、2),(3,1),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行,故排除C;()2+20,故 (),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.5、D【解析】设胡夫金字塔的底面边长为,由题可得,所以,该金字塔的侧棱长为,所以需要灯带的总长度约为,故选D6、B【解析】在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.7、D【解析】
11、过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,., ,为的中点,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.8、C【解析】求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,令,则;,则,函数在单调递增,在单调递减.函数在处取得极大值为,时,的取
12、值范围为,又当时,令,则,即,综上所述,的取值范围为.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.9、C【解析】由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,若图中空白框中填入,则,若图中空白框中填入,则,此时不成立,;执行第二次循环:由均可得,若图中空白框中填入,则,若图中空白框中填入,则,此时不成立,;执行第三次循环:由可得,符合题意,由可得,不符合题意,所以图中空白框中应填入,故选C10、D【解析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重合,故正确;,故,
13、函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.11、D【解析】由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.12、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故错误;由平面与平面垂直的判定可知正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故错误;若两个平面垂直,只有在一个平面内与它们
14、的交线垂直的直线才与另一个平面垂直,故正确综上,真命题是.故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直线mxny10(m0,n0)经过圆x2+y22x+2y10的圆心(1,1),可得m+n1,再利用“乘1法”和基本不等式的性质即可得出.【详解】mxny10(m0,n0)经过圆x2+y22x+2y10的圆心(1,1),m+n10,即m+n1.()(m+n)22+24,当且仅当mn时取等号.则的最小值是4.故答案为:4.【点睛】本题考查了圆的标准方程、“乘1法”和
15、基本不等式的性质,属于基础题.14、【解析】由题知,该四棱锥为正四棱锥,作出该正四棱锥的高和斜高,连接,则球心O必在的边上,设,由球与四棱锥的内切关系可知,设,用和表示四棱锥的体积,解得和的关系,进而表示出内切球的半径,并求出半径的最大值,进而求出球的体积的最大值.【详解】设,由球O内切于四棱锥可知,则,球O的半径,当且仅当时,等号成立,此时.故答案为:.【点睛】本题考查了棱锥的体积问题,内切球问题,考查空间想象能力,属于较难的填空压轴题.15、【解析】先画出不等式组对应的可行域,再利用数形结合分析解答得解.【详解】画出不等式组表示的可行域如图阴影区域所示.由题得y=-3x+z,它表示斜率为-
16、3,纵截距为z的直线系,平移直线,易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.故答案为:-8【点睛】本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能力.16、【解析】根据题意得出,由此可得出实数的值.【详解】,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)y24x;(2)直线NL恒过定点(3,0),理由见解析.【解析】(1)根据抛物线
17、的方程,求得焦点F(,0),利用(2,2),表示点P的坐标,再代入抛物线方程求解.(2)设M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因为A(3,2),B(3,6)在这两条直线上,分别代入两直线的方程可得y1y212,然后表示直线NL的方程为:yy1(x),代入化简求解.【详解】(1)由抛物线的方程可得焦点F(,0),满足(2,2)的P的坐标为(2,2),P在抛物线上,所以(2)22p(2),即p2+4p120,p0,解得p2,所以抛物线的方程为:y24x;(2)设M(x0,y0),N(x1,y1),L(x2,y2),则y124x1,y224x2,直
18、线MN的斜率kMN,则直线MN的方程为:yy0(x),即y,同理可得直线ML的方程整理可得y,将A(3,2),B(3,6)分别代入,的方程可得,消y0可得y1y212,易知直线kNL,则直线NL的方程为:yy1(x),即yx,故yx,所以y(x+3),因此直线NL恒过定点(3,0)【点睛】本题主要考查了抛物线的方程及直线与抛物线的位置关系,直线过定点问题,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1)(2)【解析】(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【
19、详解】解:(1)因为,所以,当,即时,; 当,即时,;当,即时,. (2)由得,当,即时,M中仅有的整数为,所以,即; 当,即时,M中仅有的整数为,所以,即; 综上,满足题意的k的范围为【点睛】本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.19、(1)证明见解析;(2).【解析】(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值【详解】(1)证明:因为,为中点,所以,又,所以平面,又平面,所以,又,所以平面.(2)由已知及(1
20、)可知,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论20、(1)有97.5%的把握认为顾客购物体验的满意度与性别有关; (2)67元,见解析.【解析】(1)根据表格数据代入公式,结合临界值即得解;(2)的可能取值为40,60,80,1,根据题意依次计算概率,列出分布列,求数学期望即可.【详解】(1)由题得,所以,有97.5%的把握认为顾客购物体
21、验的满意度与性别有关.(2)由题意可知的可能取值为40,60,80,1,则的分布列为4060801所以,(元)【点睛】本题考查了统计和概率综合,考查了列联表,随机变量的分布列和数学期望等知识点,考查了学生数据处理,综合分析,数学运算的能力,属于中档题.21、(1)(2)【解析】(1)利用正弦定理化简已知条件,由此求得的值,进而求得的大小.(2)利用正弦定理和两角差的正弦公式,求得的表达式,进而求得的取值范围.【详解】(1)由题设知,即,所以,即,又所以.(2)由题设知,即,又为锐角三角形,所以,即所以,即,所以的取值范围是.【点睛】本小题主要考查利用正弦定理解三角形,考查利用角的范围,求边的比
22、值的取值范围,属于中档题.22、(1);(2);.【解析】(1)根据椭圆的几何性质可得到a2,b2;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域【详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以,又由右准线方程为,得到,解得,所以 所以,椭圆的方程为 (2)设,而,则, , 因为点都在椭圆上,所以,将下式两边同时乘以再减去上式,解得, 所以 由原点到直线的距离为,得,化简得: 联立直线的方程与椭圆的方程:,得设,则,且 ,所以的面积,因为在为单调减函数,并且当时,当时,所以的面积的范围为【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值在利用代数法解决最值与范围问题时常从以下几个方面考虑:利用判别式来构造不等关系,从而确定参数的取值范围;利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;利用基本不等式求出参数的取值范围;利用函数的值域的求法,确定参数的取值范围