《2022-2023学年四川省德阳市德阳市第五中学中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省德阳市德阳市第五中学中考数学四模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果ab=5,那么代数式(2)的值是()ABC5D52一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是(
2、)A和B谐C凉D山3如图,则的度数为( )A115B110C105D654若关于x的不等式组恰有3个整数解,则字母a的取值范围是()Aa1B2a1Ca1D2a15一次函数满足,且随的增大而减小,则此函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限6点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A关于x轴对称B关于y轴对称C绕原点逆时针旋转D绕原点顺时针旋转7如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A24 cm2B48 cm2C60 cm2D80 cm28如图,O是ABC的外接圆,B=60,O的半径为4,则AC的长等于()A4B6C2
3、D89一元二次方程x28x2=0,配方的结果是()A(x+4)2=18B(x+4)2=14C(x4)2=18D(x4)2=1410关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )Aq16Cq4Dq411如图,直线ab,直线c与直线a、b分别交于点A、点B,ACAB于点A,交直线b于点C如果1=34,那么2的度数为( )A34B56C66D14612如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A美B丽C泗D阳二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AB,AC分别为O的内接正六边形,内接正方形的一边,BC是
4、圆内接n边形的一边,则n等于_14对于实数x,我们规定x表示不大于x的最大整数,例如1.1=1,3=3,2.2=3,若=5,则x的取值范围是_15已知函数y=|x2x2|,直线y=kx+4恰好与y=|x2x2|的图象只有三个交点,则k的值为_16填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是 17计算:(a2)2=_18不等式4x的解集为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场(1)如果确定小亮打第一场,再从其余
5、三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率20(6分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?21(6分
6、)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?22(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提
7、升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?23(8分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?24(10分)如图,在矩形ABCD中,对角线AC的
8、垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF. (1)求证:四边形AECF为菱形;(2)若AB4,BC8,求菱形AECF的周长.25(10分)如图,ABC内接于O,CD是O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且B=2P(1)求证:PA是O的切线;(2)若PD=,求O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长26(12分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,
9、这部手机的销售总利润为元.求关于的函数关系式;该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.27(12分)如图,点AF、CD在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,A=D,AF=DC(1)求证:四边形BCEF是平行四边形,(2)若ABC=90,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符
10、合题目要求的)1、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(2)=a-b,当a-b=5时,原式=5,故选D.2、D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”故选:D点睛:注意正方体的空间图形,从相对面入手,分析及解答问题3、A【解析】根据对顶角相等求出CFB65,然后根据CDEB,判断出B115【详解】AFD65,CFB65,CDEB,B1
11、8065115,故选:A【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键4、B【解析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.【详解】解:x的不等式组恰有3个整数解,整数解为1,0,-1,-2a-1.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.5、A【解析】试题分析:根据y随x的增大而减小得:k0,又kb0,则b0,故此函数的图象经过第二、三、四象限,即不经过第一象限故选A考点:一次函数图象与系数的关系6、C【解析】分析:根据旋转的定义得到即可详解:因为
12、点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90得到点B,故选C点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角7、A【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为81=4cm,故侧面积=rl=64=14cm1故选:A【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了
13、对空间想象能力方面的考查8、A【解析】解:连接OA,OC,过点O作ODAC于点D,AOC=2B,且AOD=COD=AOC,COD=B=60;在RtCOD中,OC=4,COD=60,CD=OC=2,AC=2CD=4故选A【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理9、C【解析】x2-8x=2,x2-8x+16=1,(x-4)2=1故选C【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法10、A【解析】关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,0,即82-4q0,q16,故
14、选 A.11、B【解析】分析:先根据平行线的性质得出2+BAD=180,再根据垂直的定义求出2的度数详解:直线ab,2+BAD=180 ACAB于点A,1=34,2=1809034=56 故选B点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大12、D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键二、填空题:(本大题共6个小题,每小题
15、4分,共24分)13、12【解析】连接AO,BO,CO,如图所示:AB、AC分别为O的内接正六边形、内接正方形的一边,AOB=60,AOC=90,BOC=30,n=12,故答案为12.14、11x1【解析】根据对于实数x我们规定x不大于x最大整数,可得答案【详解】由=5,得: ,解得11x1,故答案是:11x1【点睛】考查了解一元一次不等式组,利用x不大于x最大整数得出不等式组是解题关键15、11或1【解析】直线y=kx+4与抛物线y=-x1+x+1(-1x1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可
16、求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件【详解】解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=-x1+x+1(-1x1),当直线y=kx+4与抛物线y=-x1+x+1(-1x1)相切时,直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,=(k-1)1-8=0,解得k=11 ,所以k的值为1+1或1-1当k=1+1时
17、,经检验,切点横坐标为x=-1不符合题意,舍去当y=kx+4过(1,0)时,k=-1,也满足条件,故答案为1-1或-1【点睛】本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1x1上时的解析式。16、2【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数因此,图中阴影部分的两个数分别是左下是12,右上是1解:分析可得图中阴影部分的两个数分别是左下是12,右上是1,则m=12110=2故答案为2考点:规律型:数字的变化类
18、17、a1【解析】根据幂的乘方法则进行计算即可.【详解】 故答案为【点睛】考查幂的乘方,掌握运算法则是解题的关键.18、x1【解析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x182x,移项合并得:3x12,解得:x1,故答案为:x1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(2)【解析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出
19、小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率【详解】解:(1)确定小亮打第一场,再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为【点睛】本题主要考查了列表法与树状图法;概率公式20、甲、乙两种节能灯分别购进40、60只;商场获利1300元【解析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这
20、个方程组,得,答:甲、乙两种节能灯分别购进40、60只(2)商场获利元,答:商场获利1300元【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量21、(1)y=100x+17360;(2)3种方案:A型车21辆,B型车41辆最省钱.【解析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题【详解】(1)由题意:y=380x+280(62-x)=100x+17360,30x+20(62-x)1441,x20.1,又x为整数,x的取值范围为21x
21、62的整数;(2)由题意100x+1736019720,x23.6,21x23,共有3种租车方案,x=21时,y有最小值=1即租租A型车21辆,B型车41辆最省钱【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题22、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【解析】(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间
22、的函数关系式,根据一次函数的性质就可以求出结论.【详解】(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x3)万元,则,解得x=1经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a套,则乙种套房提升(80a)套,则209025a+1(80a)2096,解得48a2共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套设提升两种套房所需要的费用为y万元,则y=25a+1(80a)=3a+2240,k=3,当a取最大值2时,即方案三:甲种套
23、房提升2套,乙种套房提升30套时,y最小值为2090万元【点睛】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程23、(1)10,1;(2)【解析】(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可【详解】解:(1)图象过点, ,解得的顶点坐标为,当时,最大=1答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元(2)函数图象的对称轴为直线,可知点关于对称轴的
24、对称点是,又函数图象开口向下,当时,答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质24、(1)见解析;(2)1【解析】(1)根据ASA推出:AEOCFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EFAC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8x在RtABF中,由勾股定理求出x的值,即可得到结论【详解】(1)EF是AC的垂直平分线,AO=OC,AOE=COF=90四边形ABCD是矩形
25、,ADBC,EAO=FCO在AEO和CFO中,AEOCFO(ASA);OE=OF又OA=OC,四边形AECF是平行四边形又EFAC,平行四边形AECF是菱形;(2)设AF=xEF是AC的垂直平分线,AF=CF=x,BF=8x在RtABF中,由勾股定理得:AB2+BF2=AF2,42+(8x)2=x2,解得:x=5,AF=5,菱形AECF的周长为1【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想25、(1)证明见解析;(2);(3);【解析】(1)连接OA、AD,如图,利用圆周角定理得到B=ADC,则可证明A
26、DC=2ACP,利用CD为直径得到DAC=90,从而得到ADC=60,C=30,则AOP=60,于是可证明OAP=90,然后根据切线的判断定理得到结论;(2)利用P=30得到OP=2OA,则,从而得到O的直径;(3)作EHAD于H,如图,由点B等分半圆CD得到BAC=45,则DAE=45,设DH=x,则DE=2x,所以 然后求出x即可得到DE的长【详解】(1)证明:连接OA、AD,如图,B=2P,B=ADC,ADC=2P,AP=AC,P=ACP,ADC=2ACP,CD为直径,DAC=90,ADC=60,C=30,ADO为等边三角形,AOP=60,而P=ACP=30,OAP=90,OAPA,PA
27、是O的切线;(2)解:在RtOAP中,P=30,OP=2OA,O的直径为;(3)解:作EHAD于H,如图,点B等分半圆CD,BAC=45,DAE=45,设DH=x,在RtDHE中,DE=2x,在RtAHE中, 即解得 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理26、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2);手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型
28、手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,然后分当时,当时,当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)根据题意,得,即.根据题意,得,解得.,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大
29、.(3)根据题意,得.即,.当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;当时,即手机店购进型手机的数量为满足的整数时,获得利润相同;当时,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.27、(1)见解析(2)当AF=时,四边形BCEF是菱形【解析】(1)由AB=DE,A=D,AF=DC,根据SAS得ABCDEF,即可得BC=EF,且BCEF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BE
30、CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得ABCBGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:AF=DC,AF+FC=DC+FC,即AC=DF.在ABC和DEF中,AC=DF,A=D,AB=DE,ABCDEF(SAS).BC=EF,ACB=DFE,BCEF.四边形BCEF是平行四边形(2)解:连接BE,交CF与点G,四边形BCEF是平行四边形,当BECF时,四边形BCEF是菱形.ABC=90,AB=4,BC=3,AC=.BGC=ABC=90,ACB=BCG,ABCBGC,即.FG=CG,FC=2CG=,AF=ACFC=5.当AF=时,四边形BCEF是菱形