2022-2023学年佛山市普通高中高三六校第一次联考数学试卷含解析.doc

上传人:茅**** 文档编号:87795938 上传时间:2023-04-17 格式:DOC 页数:19 大小:1.87MB
返回 下载 相关 举报
2022-2023学年佛山市普通高中高三六校第一次联考数学试卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年佛山市普通高中高三六校第一次联考数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年佛山市普通高中高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年佛山市普通高中高三六校第一次联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( )ABCD2设集合A=4,5,7,9,B

2、=3,4,7,8,9,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个3设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为( )A2BCD34已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,的概率为( )ABCD5执行如图所示的程序框图后,输出的值为5,则的取值范围是( ). ABCD6已知,满足,且的最大值是最小值的4倍,则的值是( )A4BCD7相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调如图的程序是与“三分损益”结合的计算过程,若输入的的值为1

3、,输出的的值为( )ABCD8已知,则( )ABCD9设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( )ABCD10已知函数,则的最小值为( )ABCD11若点是角的终边上一点,则( )ABCD12数列an,满足对任意的nN+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列an的前100项的和S100=( )A132B299C68D99二、填空题:本题共4小题,每小题5分,共20分。13已知三棱锥的四个顶点都在球的球面上,则球

4、的表面积为_.14已知,则=_,_15若,则_16已知,为正实数,且,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某社区服务中心计划按月订购一种酸奶,每天进货量相同,进货成本每瓶5元,售价每瓶7元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:摄氏度)有关.如果最高气温不低于25,需求量为600瓶;如果最高气温位于区间,需求量为500瓶;如果最高气温低于20,需求量为300瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数414362763

5、以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为(单位:瓶)时,的数学期望的取值范围?18(12分)已知分别是的内角的对边,且()求()若,求的面积()在()的条件下,求的值19(12分)如图,空间几何体中,是边长为2的等边三角形,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.20(12分)已知为坐标原点,点,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)

6、若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.21(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列22(10分)设函数(1)当时,解不等式;(2)若的解集为,求证:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意

7、,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意, ,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.2、A【解析】试题分析:,所以,即集合中共有3个元素,故选A考点:集合的运算3、A【解析】分析:题设的直线与抛物线是相离的,可以化成,其中是点到准线的距离,也就是到焦点的距离,这样我们从几何意义得到的最小值,从而得到的最小值. 详解:由得到,故无解,所以直线与抛物线是相离的.由,而为到准线的距

8、离,故为到焦点的距离,从而的最小值为到直线的距离,故的最小值为,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.4、B【解析】首先求出基本事件总数,则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”, 记事件“恰好不同时包含字母,”为,利用对立事件的概率公式计算可得;【详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”记事件“恰好不同时包含字母,”为,则.故选:B【点睛】本题考查了古典概型及其概率计算公式,考查了排列组

9、合的知识,解答的关键在于正确理解题意,属于基础题5、C【解析】框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.6、D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.7、B【解析】根据循环语句,输入,执行循环语句即可计算出结果.【详解】输入,由题意执行

10、循环结构程序框图,可得:第次循环:,不满足判断条件;第次循环:,不满足判断条件;第次循环:,满足判断条件;输出结果.故选:【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.8、C【解析】利用诱导公式得,再利用倍角公式,即可得答案.【详解】由可得,.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.9、D【解析】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面

11、,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,,即,数列是以为公比的等比数列,而,所以,当时,故选:D.【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.10、C【解析】利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【详解】由于,故其最小值为:.故选:C.【点睛】本题

12、考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.11、A【解析】根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、B【解析】由为定值,可得,则是以3为周期的数列,求出,即求.【详解】对任意的,均有为定值,故,是以3为周期的数列,故,.故选:.【点睛】本题考查周期数列求和,属于中档题.二、填空题:本题共

13、4小题,每小题5分,共20分。13、【解析】如图所示,将三棱锥补成长方体,球为长方体的外接球,长、宽、高分别为,计算得到,得到答案.【详解】如图所示,将三棱锥补成长方体,球为长方体的外接球,长、宽、高分别为,则,所以,所以球的半径,则球的表面积为.故答案为:.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力,将三棱锥补成长方体是解题的关键.14、196 3 【解析】由二项式定理及二项式展开式通项得:,令x=1,则1+a0+a1+a7=(1+1)(1-2)7=-2,所以a0+a1+a7=-3,得解【详解】由二项式(12x)7展开式的通项得,则,令x=1,则,所以a0+a

14、1+a7=3,故答案为:196,3.【点睛】本题考查二项式定理及其通项,属于中等题.15、【解析】因为,由二倍角公式得到 ,故得到 故答案为16、【解析】由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)X的可能取值为300,500,600,结合题意及表格数据计算对应概率,即得解;(2)由题意得,分,及,分别得到y与n的函数关系

15、式,得到对应的分布列,分析即得解.【详解】(1)由题意:X的可能取值为300,500,600 故:六月份这种酸奶一天的需求量(单位:瓶)的分布列为300500600(2)由题意得.1.当时,利润此时利润的分布列为.2.时,利润此时利润的分布列为.综上的数学期望的取值范围是.【点睛】本题考查了函数与概率统计综合,考查了学生综合分析,数据处理,转化划归,数学运算的能力,属于中档题.18、();();().【解析】()由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;()由余弦定理可求,然后结合三角形的面积公式可求;()结合二倍角公式及和角余弦公式即可求解【详解】()因为,所以,所以,

16、由正弦定理可得,;()由余弦定理可得,整理可得,解可得,因为,所以;()由于,所以【点睛】本题主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面积公式的综合应用,意在考查学生对这些知识的理解掌握水平19、(1)证明见解析(2)【解析】(1)分别取,的中点,连接,要证明平面,只需证明面面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【详解】(1)证明:分别取,的中点,连接,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以,又平面,平面,所以平面,由,有,又平面,

17、平面,所以平面,由平面,平面,所以平面平面,所以平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,设面的法向量,所以,取,二面角的平面角为,则为锐角.所以【点睛】本题考查由面面平行证明线面平行以及向量法求二面角的余弦值,考查学生的运算能力,在做此类题时,一定要准确写出点的坐标.20、(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析【解析】(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N

18、和Q的坐标,根据题意求出的值,即可判断结果是否成立【详解】(1)由题知,所以 ,因此动点的轨迹是以,为焦点的椭圆,又知,所以曲线的标准方程为.又由题知,所以 ,所以,又因为点在抛物线上,所以,所以抛物线的标准方程为.(2)设,由题知,所以,即,所以 ,又因为,所以,所以为定值,且定值为1.【点睛】本题考查了圆锥曲线的定义与性质的应用问题,考查抛物线的几何性质及点在曲线上的代换,也考查了推理与运算能力,是中档题21、(1);(2)见解析.【解析】(1)利用独立事件的概率乘法公式可计算出所求事件的概率;(2)由题意可知随机变量的可能取值有、,计算出随机变量在不同取值下的概率,由此可得出随机变量的分

19、布列.【详解】(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件,则;(2)由题意可知,随机变量的可能取值为、则,故的分布列为【点睛】本题考查概率的计算,同时也考查了随机变量分布列,考查计算能力,属于基础题.22、(1);(2)见解析.【解析】(1)当时,将所求不等式变形为,然后分、三段解不等式,综合可得出原不等式的解集;(2)先由不等式的解集求得实数,可得出,将代数式变形为,将与相乘,展开后利用基本不等式可求得的最小值,进而可证得结论.【详解】(1)当时,不等式为,且.当时,由得,解得,此时;当时,由得,该不等式不成立,此时;当时,由得,解得,此时.综上所述,不等式的解集为;(2)由,得,即或,不等式的解集为,故,解得, ,当且仅当,时取等号,【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式,考查推理能力与计算能力,属于中等题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁