《2022-2023学年张掖市重点中学高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年张掖市重点中学高考数学三模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1是虚数单位,复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限2已知的部分图象如图所示,则的表达式是
2、( )ABCD3已知向量,(其中为实数),则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4已知实数集,集合,集合,则( )ABCD5已知平面向量,满足:,则的最小值为( )A5B6C7D86已知若(1-ai )( 3+2i )为纯虚数,则a的值为 ( )ABCD7是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( )A若,且,则B若,且,则C若,且,则D若,且,则9五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、
3、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )ABCD10已知函数是上的偶函数,是的奇函数,且,则的值为( )ABCD11已知为虚数单位,实数满足,则 ( )A1BCD12设向量,满足,则的取值范围是ABCD二、填空题:本题共4小题,每小题5分,共20分。13(5分)有一道描述有关等差与等比数列的问题:有四个和尚在做法事之前按身高从低到高站成一列,已知前三个和尚的身高依次成等差数列,后三个和尚的身高依次成等比数列,且前三个和尚的身高之和为cm,中间两个和尚的身高之和为cm,则最高的和尚的身高是_ cm14已知
4、函数,若的最小值为,则实数的取值范围是_15高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 16记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923
5、.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立月总成本与月产量之间的回归方程;通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:参考数据:,.参考公式:相关系数,.18(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.19(12分)已知函数(1)解不等式;(2)若均为正实数,且满足,为的最小值,求证:.20(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证
6、明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.21(12分)2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和
7、数学期望.22(10分)已知函数.(1)讨论函数单调性;(2)当时,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.2、D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因
8、此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.3、A【解析】结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.4、A【解析】可得集合,求出补集,再求出即可.【详解】由,得,即,所以,所以.故选:A【点睛】本题考查了集合的补集和交集的混合运算,属于基础题.5、B【解析】建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再
9、将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,且,由于,所以.所以,即.当且仅当时取得最小值,此时由得,当时,有最小值为,即,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.6、A【解析】根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.【详解】由题可知原式为,该复数为纯虚数,所以.故选:A【点睛】本题考查复数的运算和复数的分类,属基础题.7、B【解析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充
10、分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.8、D【解析】利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确故选:【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知并准确判断9、A【解析】列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金
11、、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.10、B【解析】根据函数的奇偶性及题设中关于与关系,转
12、换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,而函数是上的偶函数,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.11、D【解析】 ,则 故选D.12、B【解析】由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.【点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】依题意设前三个和尚的身高依次为,第四个(最高)和尚的身高为,则,解得,又,解得,又因为成等比数列,则公比,故.14、【解析】,可得在时,最小值为,时,要使得最小值为,则对
13、称轴在1的右边,且,求解出即满足最小值为.【详解】当,当且仅当时,等号成立.当时,为二次函数,要想在处取最小,则对称轴要满足并且,即,解得.【点睛】本题考查分段函数的最值问题,对每段函数先进行分类讨论,找到每段的最小值,然后再对两段函数的最小值进行比较,得到结果,题目较综合,属于中档题.15、20【解析】根据系统抽样的定义将56人按顺序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四组的学号,所以还有一个同学应该是15+6-1=20号,故答案为20.16、【解析】试题分析:显然,又,当时,作
14、出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是考点:不等式、简单线性规划.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)3.386(万元)【解析】(1)利用代入数值,求出后即可得解;(2)计算出、后,利用求出后即可得解;把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,说明与正相关,且相关性很强.(2)由已知求得,所以,所求回归直线方程为.当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的
15、应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.18、(1);(2)【解析】(1)利用互化公式,将曲线的极坐标方程化为直角坐标方程,得出曲线与极轴所在直线围成的图形是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,即可求出面积;(2)联立方程组,分别求出和的坐标,即可求出.【详解】解:(1)由于的极坐标方程为,根据互化公式得,曲线的直角坐标方程为:当时,当时,则曲线与极轴所在直线围成的图形,是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,围成图形的面积.(2)由得,其直角坐标为,化直角坐标方程为,化直角坐标方程为,.【点睛】本题考查利用互化公式将极坐标方程化为直
16、角坐标方程,以及联立方程组求交点坐标,考查计算能力.19、(1)或(2)证明见解析【解析】(1)将写成分段函数的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,证得不等式成立.【详解】(1)当时,恒成立,解得;当时,由,解得;当时,由解得所以的解集为或(2)由(1)可求得最小值为,即因为均为正实数,且(当且仅当时,取“”)所以,即.【点睛】本小题主要考查绝对值不等式的求法,考查利用基本不等式证明不等式,属于中档题.20、(1)证明见详解;(2)证明见详解【解析】(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,则对于任意都成立,
17、则成等比数列,设公比为,验证得答案.【详解】(1)证明:由是等比数列,由等比数列的性质可得:等比数列是“数列”. (2)证明:既是“数列”又是“数列”,可得,() (),() 可得:对于任意都成立,即 成等比数列,即成等比数列, 成等比数列, 成等比数列,设,()数列是“数列”时,由()可得: 时,由()可得: ,可得,同理可证成等比数列, 数列是等比数列【点睛】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能力,属于难题.21、(1)3360元;(2)见解析【解析】(1)根据频率分布直方图计算每个农户的平均损
18、失;(2)根据频率分布直方图计算随机变量X的可能取值,再求X的分布列和数学期望值【详解】(1)记每个农户的平均损失为元,则 ;(2)由频率分布直方图,可得损失超过1000元的农户共有(0.00009+0.00003+0.00003)20005015(户),损失超过8000元的农户共有0.000032000503(户),随机抽取2户,则X的可能取值为0,1,2;计算P(X0),P(X1),P(X2),所以X的分布列为; X012P数学期望为E(X)0+1+2【点睛】本题考查了频率分布直方图与离散型随机变量的分布列与数学期望计算问题,属于中档题22、(1)见解析(2)见解析【解析】(1)根据的导函数进行分类讨论单调性(2)欲证,只需证,构造函数,证明,这时需研究的单调性,求其最大值即可【详解】解:(1)的定义域为, 当时,由得,由,得,所以在上单调递增,在单调递减;当时,由得,由,得,或,所以在上单调递增,在单调递减,在单调递增;当时,所以在上单调递增;当时,由,得,由,得,或,所以在上单调递增,在单调递减,在单调递增.(2)当时,欲证,只需证,令,则,因存在,使得成立,即有,使得成立.当变化时,的变化如下:0单调递增单调递减所以.因为,所以,所以.即,所以当时,成立.【点睛】考查求函数单调性的方法和用函数的最值证明不等式的方法,难题.