2022-2023学年广东省华南师范大附属中学中考数学适应性模拟试题含解析.doc

上传人:茅**** 文档编号:87795865 上传时间:2023-04-17 格式:DOC 页数:17 大小:804.50KB
返回 下载 相关 举报
2022-2023学年广东省华南师范大附属中学中考数学适应性模拟试题含解析.doc_第1页
第1页 / 共17页
2022-2023学年广东省华南师范大附属中学中考数学适应性模拟试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年广东省华南师范大附属中学中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省华南师范大附属中学中考数学适应性模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;在这样连续6次旋转的过程中,

2、点B,O间的距离不可能是()A0B0.8C2.5D3.42如图,已知在ABC,ABAC若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()AAEECBAEBECEBCBACDEBCABE3如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在O上,若过点M作O的一条切线MK,切点为K,则MK()A3B2C5D4若分式的值为零,则x的值是( )A1BCD25下列计算正确的是()A5x2x=3xB(a+3)2=a2+9C(a3)2=a5Da2pap=a3p6二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=

3、在同一平面直角坐标系中的图象可能是()ABCD7已知实数a0,则下列事件中是必然事件的是()Aa+30Ba30C3a0Da308如图,二次函数y=ax2+bx+c(a0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC有下列结论:abc0;3b+4c0;c1;关于x的方程ax2+bx+c=0有一个根为,其中正确的结论个数是()A1B2C3D49如图,A,B是半径为1的O上两点,且OAOB点P从A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是ABC或D或10函数

4、的自变量x的取值范围是( )Ax1Bx0时,y的值随x的增大而越来越接近-1当x时,y的取值范围是y1以上结论正确的是_(填序号)16若点A(3,4)、B(2,m)在同一个反比例函数的图象上,则m的值为 17因式分解:_三、解答题(共7小题,满分69分)18(10分)如图,在RtABC中,ACB90,CD 是斜边AB上的高(1)ACD与ABC相似吗?为什么?(2)AC2ABAD 成立吗?为什么?19(5分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: , ;扇形统计图中机器人项目

5、所对应扇形的圆心角度数为 ;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.20(8分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30方向8km处,位于景点B的正北方向,还位于景点C的北偏西75方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长(结果精确到0.1km)求景点C与景点D之间的距离(结果精确到1km)21(10分)先化简,再求值:,其中,a

6、、b满足22(10分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了 个家庭;将图中的条形图补充完整;学习时间在22.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?23(12分)如图,ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1)在图中以点O为位似中心在原点的另一侧画出ABC放大1倍后得到的A

7、1B1C1,并写出A1的坐标;请在图中画出ABC绕点O逆时针旋转90后得到的A1B1C124(14分)在如图的正方形网格中,每一个小正方形的边长均为 1格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(2,0),(3,3)(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;(2)把ABC 绕坐标原点 O 顺时针旋转 90得到A1B1C1,画出A1B1C1,写出点B1的坐标;(3)以坐标原点 O 为位似中心,相似比为 2,把A1B1C1 放大为原来的 2 倍,得到A2B2C2 画出A2B2C2,使它与AB1C1 在位似中心的同侧;请在 x 轴上求作一点 P

8、,使PBB1 的周长最小,并写出点 P 的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0d,即0d3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CHBD于点H,六边形ABCDE是正六边形,BCD=120,CBH=30,BH=cos30 BC=,BD=.DK=,BK=,点B,O间的距离d的最小值为0,最大值为线段BK=,0d,即0d3.1,故点B,O间的距离不可能是3.4,故选:D【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O

9、的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键2、C【解析】解:AB=AC,ABC=ACB以点B为圆心,BC长为半径画弧,交腰AC于点E,BE=BC,ACB=BEC,BEC=ABC=ACB,BAC=EBC故选C点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大3、B【解析】以OM为直径作圆交O于K,利用圆周角定理得到MKO90从而得到KMOK,进而利用勾股定理求解【详解】如图所示:MK.故选:B【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系4、A【解析】试题解析:分式的值为零

10、,|x|1=0,x+10,解得:x=1故选A5、D【解析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案【详解】解:A5x2x=7x,故此选项错误;B(a+3)2=a2+6a+9,故此选项错误;C(a3)2=a6,故此选项错误;Da2pap=a3p,正确故选D【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键6、C【解析】试题分析:二次函数图象开口方向向下,a0,对称轴为直线0,b0,与y轴的正半轴相交,c0,的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合故选C考点:1二次函数的图象;2一次

11、函数的图象;3反比例函数的图象7、B【解析】A、a+30是随机事件,故A错误;B、a30是必然事件,故B正确;C、3a0是不可能事件,故C错误;D、a30是随机事件,故D错误;故选B点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断;由对称轴=2可知a=,由图象可知当x=1时,y0,可判断;由OA=OC,且OA1,可

12、判断;把-代入方程整理可得ac2-bc+c=0,结合可判断;从而可得出答案【详解】解:图象开口向下,a0,对称轴为直线x=2,0,b0,与y轴的交点在x轴的下方,c0,abc0,故错误.对称轴为直线x=2,=2,a=,由图象可知当x=1时,y0,a+b+c0,4a+4b+4c0,4()+4b+4c0,3b+4c0,故错误.由图象可知OA1,且OA=OC,OC1,即-c1,c-1,故正确.假设方程的一个根为x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,两边同时乘c可得ac2-bc+c=0,方程有一个根为x=-c,由可知-c=OA,而当x=OA是方程的根,x=-c是方程的根,即假

13、设成立,故正确.综上可知正确的结论有三个:.故选B.【点睛】本题主要考查二次函数的图象和性质熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键特别是利用好题目中的OA=OC,是解题的关键.9、D【解析】分两种情形讨论当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是,由此即可解决问题【详解】解:当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是故选D10、C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围试题解析:根据题意得:1-x0,解得:x1故选C考点:函数自变量的取值范围二、填空题(共7小题,每小题3分,满分21分)11、【解析】在矩

14、形ABCD中,AB=,DAC=60,DC=,AD=1由旋转的性质可知:DC=,AD=1,tanDAC=,DAC=60BAB=30,SABC=1=,S扇形BAB=S阴影=SABC-S扇形BAB=-故答案为-【点睛】错因分析中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出的值.12、【解析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解【详解】解:法一、=(- ) = = 2-m故答案为:2-m法二、原式= =1-m+1=2-m故答案为:2-m【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律

15、13、【解析】连接CD,根据题意可得DCEBDF,阴影部分的面积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90,GDM=HDN,则在DMG和DNH中, ,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DG

16、CH=S四边形DMCN是关键14、 【解析】根据三角形的面积公式求出,根据等腰三角形的性质得到BDDCBC,根据勾股定理列式计算即可【详解】AD是BC边上的高,CE是AB边上的高,ABCEBCAD,AD6,CE8,ABAC,ADBC,BDDCBC,AB2BD2AD2,AB2BC236,即BC2BC236,解得:BC故答案为:【点睛】本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关15、【解析】(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论错误;(2)由解得:,的图象与x轴的交点为(1,0),故中结论正确;

17、(3)由可知当x0时,y的值随x的增大而越来越接近-1,故中结论正确;(4)因为在中,当时,故中结论错误;综上所述,正确的结论是.故答案为:.16、1【解析】设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3(4)=2m,然后解关于m的方程即可【详解】解:设反比例函数解析式为y=,根据题意得k=3(4)=2m,解得m=1故答案为1考点:反比例函数图象上点的坐标特征17、【解析】先提公因式,再用平方差公式分解.【详解】解:【点睛】本题考查因式分解,掌握因式分解方法是关键.三、解答题(共7小题,满分69分)18、(1)ACD 与ABC相似;(2)AC2ABAD成立.【解析】(1)

18、求出ADCACB90,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,再进行变形即可【详解】解:(1)ACD 与ABC相似,理由是:在 RtABC 中,ACB90,CD 是斜边AB上的高,ADCACB90,AA,ACDABC;(2)AC2ABAD成立,理由是:ACDABC,AC2ABAD【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出ACDABC 是解此题的关键19、(1),; (2);(3).【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男

19、生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.20、(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km【解析】解:(1)如图,过点D作DEAC于点E,过点A作AFDB,交DB的延长线于点F,在RtDAF中,ADF=30,AF=AD=8=4,DF=,在RtABF中BF=3,BD=DFBF=43,sinABF=,在RtDBE中,sinDBE=,ABF=DBE,sinDBE=,D

20、E=BDsinDBE=(43)=3.1(km),景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知CDB=75,由(1)可知sinDBE=0.8,所以DBE=53,DCB=1807553=52,在RtDCE中,sinDCE=,DC=4(km),景点C与景点D之间的距离约为4km21、【解析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得【详解】原式=,=, =,解方程组得,所以原式=【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则22、 (1)200;(2)见解析;(3)36;(4)该社区学

21、习时间不少于1小时的家庭约有2100个【解析】(1)根据1.52小时的圆心角度数求出1.52小时所占的百分比,再用1.52小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360乘以学习时间在22.5小时所占的百分比,即可求出学习时间在22.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案【详解】解:(1)本次抽样调查的家庭数是:30200(个)

22、;故答案为200;(2)学习0.51小时的家庭数有:20060(个),学习22.5小时的家庭数有:20060903020(个),补图如下:(3)学习时间在22.5小时的部分对应的扇形圆心角的度数是:36036;故答案为36;(4)根据题意得:30002100(个)答:该社区学习时间不少于1小时的家庭约有2100个【点睛】本题考查条形统计图、扇形统计图及相关计算在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360的比23、(1)A(1,6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1

23、)如图,A1B1C1为所作,A(1,6);(1)如图,A1B1C1为所作24、(1)(4,1);(2)(1,4);(3)见解析;(4)P(3,0)【解析】(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出A2B2C2;(4)作点B关于x轴的对称点B,连接BB1,交x轴于点P,则点P即为所求.【详解】解:(1)如图所示,点B的坐标为(4,1);(2)如图,A1B1C1即为所求,点B1的坐标(1,4);(3)如图,A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B,连接BB1,交x轴于点P,则点P即为所求,P(3,0)【点睛】本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁