2022-2023学年广西南宁市第二中学中考二模数学试题含解析.doc

上传人:茅**** 文档编号:87795738 上传时间:2023-04-17 格式:DOC 页数:24 大小:1.25MB
返回 下载 相关 举报
2022-2023学年广西南宁市第二中学中考二模数学试题含解析.doc_第1页
第1页 / 共24页
2022-2023学年广西南宁市第二中学中考二模数学试题含解析.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2022-2023学年广西南宁市第二中学中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西南宁市第二中学中考二模数学试题含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x-1时,y的值随x值的增大而增大.其中正确的结论有( )A1个B2个C3个D4个2如图是由长

2、方体和圆柱组成的几何体,它的俯视图是()ABCD3如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()ABCD4如图,将ABC绕点C旋转60得到ABC,已知AC=6,BC=4,则线段AB扫过的图形面积为()ABC6D以上答案都不对5如图,AOB45,OC是AOB的角平分线,PMOB,垂足为点M,PNOB,PN与OA相交于点N,那么的值等于()ABCD6已知点A(1,y1)、B(2,y2)、C(3,y3)都在反比例函数y的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy2y1y3D

3、y3y1y27如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30BOABC,OBACCAB与OC互相垂直DAB与OC互相平分8第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案

4、的概率是( )ABCD9在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )AB或CD或10已知是二元一次方程组的解,则的算术平方根为( )A2BC2D411如图,点D在ABC的边AC上,要判断ADB与ABC相似,添加一个条件,不正确的是( )AABD=CBADB=ABCCD12如图,是的外接圆,已知,则的大小为ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_cm14如图,在平面直角坐标系中,函数y

5、=(x0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为_15如图,AB、CD相交于点O,ADCB,请你补充一个条件,使得AODCOB,你补充的条件是_16如图,点A,B是反比例函数y=(x0)图象上的两点,过点A,B分别作ACx轴于点C,BDx轴于点D,连接OA,BC,已知点C(2,0),BD=2,SBCD=3,则SAOC=_17某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是_元18如图,直线 ab,直线 c 分别于 a,b 相交,1=50,2=130,则3 的度数为( )A50B80C100D130三、

6、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图和图.请根据相关信息,解答下列问题:()图中的值为 ;()求统计的这组数据的平均数、众数和中位数;() 根据样本数据,估计这2500只鸡中,质量为的约有多少只?20(6分)已知:二次函数C1:y1ax2+2ax+a1(a0)把二次函数C1的表达式化成ya(xh)2+b(a0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(3,1)求a的值;点B在二次函数C1的图象上,点A,B关于对称轴对称,连接A

7、B二次函数C2:y2kx2+kx(k0)的图象,与线段AB只有一个交点,求k的取值范围21(6分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交BC的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c222(8分)国家发改委公布的商品房销售明码标价规定,从201

8、1年5月1日起商品房销售实行一套一标价商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:打9.8折销售;不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?23(8分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点求抛物线的表达式;若

9、将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标24(10分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且ACx轴.(1)已知A(3,0),B(1,0),AC=OA求抛物线解析式和直线OC的解析式;点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EGx轴于G,连CG,BF,求证:CGBF25(10分)端午节“赛龙舟,吃粽子”是中

10、华民族的传统习俗节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率26(12分)如图,点,在上,直线是的切线,连接交于

11、(1)求证:(2)若,的半径为,求的长27(12分)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要

12、求的)1、B【解析】根据抛物线的对称轴即可判定;观察图象可得,当x=-3时,y0,由此即可判定;观察图象可得,当x=1时,y0,由此即可判定;观察图象可得,当x2时,的值随值的增大而增大,即可判定.【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,正确;观察图象可得,当x=-3时,y0,即9a-3b+c0,所以,错误;观察图象可得,当x=1时,y0,即a+b+c0,正确;观察图象可得,当x2时,的值随值的增大而增大,错误综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物

13、线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点2、A【解析】分析:根据从上边看得到的图形是俯视图,可得答案详解:从上边看外面是正方形,里面是没有圆心的圆,故选A点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图3、D【解析】连接BD,BE,B

14、O,EO,先根据B、E是半圆弧的三等分点求出圆心角BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为SABCS扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,B,E是半圆弧的三等分点,EOAEOBBOD60,BADEBA30,BEAD, 的长为 ,解得:R4,ABADcos30 ,BCAB,ACBC6,SABCBCAC6,BOE和ABE同底等高,BOE和ABE面积相等,图中阴影部分的面积为:SABCS扇形BOE故选:D【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键

15、.4、D【解析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积【详解】阴影面积=故选D【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形5、B【解析】过点P作PEOA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得POM=OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出PNE=AOB,再根据直角三角形解答【详解】如图,过点P作PEOA于点E,OP是AOB的平分线,PEPM,PNOB,POMOPN,PNEPON+OPNPON+POMA

16、OB45,故选:B【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键6、B【解析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可【详解】点A(1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,y1=6,y2=3,y3=-2,236,y3y2y1,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.7、C【解析】(1)DAC=DBC=30,AOC=

17、BOC=60,又OA=OC=OB,AOC和OBC都是等边三角形,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)AB与OC互相平分,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.8、B【解析】先找出滑雪项目图案的张数,结合5 张形

18、状、大小、质地均相同的卡片,再根据概率公式即可求解【详解】有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B【点睛】本题考查了简单事件的概率用到的知识点为:概率=所求情况数与总情况数之比9、B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m2,n2)或(m(-2),n(-2),即(2m,2n)或(-2m,-2n),故选B点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以

19、原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k10、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根【分析】是二元一次方程组的解,解得即的算术平方根为1故选C11、C【解析】由A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用【详解】A是公共角,当ABD=C或ADB=ABC时,ADBABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,ADBABC(两组对应边的比相等且夹角对应相等的两个

20、三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,A不是夹角,故不能判定ADB与ABC相似,故C错误,符合题意要求,故选C12、A【解析】解:AOB中,OA=OB,ABO=30;AOB=180-2ABO=120;ACB=AOB=60;故选A二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】设圆锥的底面圆的半径为r,由于AOB90得到AB为圆形纸片的直径,则OBcm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,扇形OAB的圆心角为90,AOB

21、90,AB为圆形纸片的直径,AB4cm,OBcm,扇形OAB的弧AB的长,2r,r(cm)故答案为【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长也考查了圆周角定理和弧长公式14、2【解析】设矩形OABC中点B的坐标为,点E、F是AB、BC的中点,点E、F的坐标分别为:、,点E、F都在反比例函数的图象上,SOCF=,SOAE=,S矩形OABC=,S四边形OEBF= S矩形OABC- SOAE-SOCF=.即四边形OEBF的面积为2.点睛:反比例函数中“”的几何意义为:若点P是反比例函数图象上的一点,连接坐标原点O和点P,过点P向坐

22、标轴作垂线段,垂足为点D,则SOPD=.15、AC或ADCABC【解析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可【详解】添加条件可以是:AC或ADCABC添加AC根据AAS判定AODCOB,添加ADCABC根据AAS判定AODCOB,故填空答案:AC或ADCABC【点睛】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键16、1【解析】由三角形BCD为直角三角形,根据已知面积与BD的长求出

23、CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可【详解】BDCD,BD=2,SBCD=BDCD=2,即CD=2C(2,0),即OC=2,OD=OC+CD=2+2=1,B(1,2),代入反比例解析式得:k=10,即y=,则SAOC=1 故答案为1【点睛】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键17、300【解析】设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.【详解】设成本为x元,标价为y元,依题意得,解得故定价为3

24、00元.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.18、B【解析】根据平行线的性质即可解决问题【详解】ab,1+3=2,1=50,2=130,3=80, 故选B【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、()28. ()平均数是1.52. 众数为1.8. 中位数为1.5. ()200只.【解析】分析:()用整体1减去所有已知的百分比即可求出m的值;()根据众数、中位数、加权平均数的定义计算即可;()用总数乘以样本中2.0kg的鸡所占的比例即可得

25、解.解:()m%=1-22%-10%-8%-32%=28%.故m=28;()观察条形统计图,这组数据的平均数是1.52.在这组数据中,1.8出现了16次,出现的次数最多,这组数据的众数为1.8.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,这组数据的中位数为1.5.()在所抽取的样本中,质量为的数量占.由样本数据,估计这2500只鸡中,质量为的数量约占.有.这2500只鸡中,质量为的约有200只点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次

26、数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数20、 (1)y1a(x+1)21,顶点为(1,1);(2);k的取值范围是k或k1【解析】(1)化成顶点式即可求得;(2)把点A(3,1)代入二次函数C1:y1ax2+2ax+a1即可求得a的值;根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1ax2+2ax+a1a(x+1)21,顶点为(1,1);(2)二次函数C1的图象经过点A(3,1),a(3+1)211,a;A(3,1),对称轴为直线x1,B(1,1),当k0时,二次函数C2:y2kx2+kx(k0)的图象经过A(3,1)时

27、,19k3k,解得k,二次函数C2:y2kx2+kx(k0)的图象经过B(1,1)时,1k+k,解得k,k,当k0时,二次函数C2:y2kx2+kxk(x+)2k,k1,k1,综上,二次函数C2:y2kx2+kx(k0)的图象,与线段AB只有一个交点,k的取值范围是k或k1【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键21、见解析.【解析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,S五边形ACBED=SACB+SABE

28、+SADE=ab+b1+ab,又S五边形ACBED=SACB+SABD+SBDE=ab+c1+a(b-a),ab+b1+ab=ab+c1+a(b-a),a1+b1=c1【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键22、 (1) 每次下调10% (2) 第一种方案更优惠【解析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答【详解】解:(1)设平均每次下调的百分率为x,根据题意得5000(1-x)2=40

29、50解得x=10%或x=1.9(舍去)答:平均每次下调10%(2)9.8折=98%,100405098%=396900(元)1004050-1001.5122=401400(元),396900401400,所以第一种方案更优惠答:第一种方案更优惠【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.23、为;点Q的坐标为或【解析】依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵

30、坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标【详解】抛物线顶点A的横坐标是,即,解得将代入得:,抛物线的解析式为抛物线向下平移了4个单位平移后抛物线的解析式为,点O在PQ的垂直平分线上又轴,点Q与点P关于x轴对称点Q的纵坐标为将代入得:,解得:或点Q的坐标为或【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键24、 (1)y=x24x3;y=x;t= 或;(2)证明见解析.【解析】(1)把A(3,0),B(1,0)代入二次函数解析式即可

31、求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;由题意得OP=2t,P(2t,0),过Q作QHx轴于H,得OH=HQ=t,可得Q(t,t),直线 PQ为yx2t,过M作MGx轴于G,由,则2PGGH,由,得, 于是,解得,从而求出M(3t,t)或M(),再分情况计算即可; (2) 过F作FHx轴于H,想办法证得tanCAG=tanFBH,即CAG=FBH,即得证.【详解】解:(1)把A(3,0),B(1,0)代入二次函数解析式得解得y=x24x3;由AC=OA知C点坐标为(-3,-3),直线OC的解析式y=x;OP=2t,P(2t,0),过Q作QHx轴于H,QO=,OH

32、=HQ=t, Q(t,t),PQ:yx2t,过M作MGx轴于G,,2PGGH,即, , M(3t,t)或M()当M(3t,t)时:,当M()时:,综上:或(2)设A(m,0)、B(n,0),m、n为方程x2bxc=0的两根,m+n=b,mnc,yx2+(m+n)xmn(xm)(xn),E、F在抛物线上,设、,设EF:ykx+b, , ,令xmAC=,又,tanCAG=,另一方面:过F作FHx轴于H, tanFBH=tanCAG=tanFBH CAG=FBH CGBF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.25、(1);(2)【解析

33、】(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=.(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=.考点:列表法与树状图法;概率公式26、(1)证明见解析;(2)1【解析】(1)连结OA,由AC为圆的切线,利用切线的性质得到OAC为直角,

34、再由,得到BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;(2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长【详解】(1)如图,连接,切于,又,在中:,又,;(2)在中:, ,由勾股定理得:,由(1)得:,【点睛】此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键27、 (1)抛物线的解析式为:y=x1+x+1(1)存在,P1(,2),P1(,),P3(,)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=【解析】试题分析:(1)将点A、C

35、的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=SBCD+SCEF+SBEF可求出S与a的关系式,由二次函数的性质就可以求出结论试题解析:(1)抛物线y=x1+mx+n经过A(1,0),C(0,1)解得:,抛物线的解析式为

36、:y=x1+x+1;(1)y=x1+x+1,y=(x)1+,抛物线的对称轴是x=OD=C(0,1),OC=1在RtOCD中,由勾股定理,得CD=CDP是以CD为腰的等腰三角形,CP1=CP1=CP3=CD作CHx轴于H,HP1=HD=1,DP1=2P1(,2),P1(,),P3(,);(3)当y=0时,0=x1+x+1x1=1,x1=2,B(2,0)设直线BC的解析式为y=kx+b,由图象,得,解得:,直线BC的解析式为:y=x+1如图1,过点C作CMEF于M,设E(a,a+1),F(a,a1+a+1),EF=a1+a+1(a+1)=a1+1a(0x2)S四边形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN,=+a(a1+1a)+(2a)(a1+1a),=a1+2a+(0x2)=(a1)1+a=1时,S四边形CDBF的面积最大=,E(1,1)考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁