2022-2023学年云南中央民族大学附属中学高三二诊模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:87795475 上传时间:2023-04-17 格式:DOC 页数:19 大小:1.67MB
返回 下载 相关 举报
2022-2023学年云南中央民族大学附属中学高三二诊模拟考试数学试卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年云南中央民族大学附属中学高三二诊模拟考试数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年云南中央民族大学附属中学高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南中央民族大学附属中学高三二诊模拟考试数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则( )ABCD2设函数若关于的方程有四个实数解,其中,则的取值范围是( )ABCD3如果直线与圆相交,则点与圆C的位置关系是( )A点M在圆C上B点M在圆C外C点M在圆C内D

2、上述三种情况都有可能4已知函数是定义在上的偶函数,且在上单调递增,则( )ABCD5幻方最早起源于我国,由正整数1,2,3,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方定义为阶幻方对角线上所有数的和,如,则( )A55B500C505D50506已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-27已知集合的所有三个元素的子集记为记为集合中的最大元素,则()ABCD8若复数满足(为虚数单位),则其共轭复数的虚部为( )ABCD9抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有( )A1个B2个C0个D无数个

3、10若复数()在复平面内的对应点在直线上,则等于( )ABCD11盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )ABCD12函数在上的图象大致为( )A B C D 二、填空题:本题共4小题,每小题5分,共20分。13若展开式中的常数项为240,则实数的值为_.14用数字、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_个.15变量满足约束条件,则目标函数的最大值是_16执行右边的程序框图,输出的的值为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设椭圆的右焦点为,过

4、的直线与交于两点,点的坐标为(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围18(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且, ,(1)若分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值,求二面角的余弦值19(12分)已知函数.()当时,求函数在上的值域;()若函数在上单调递减,求实数的取值范围.20(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求

5、实数a的取值范围.21(12分)已知,求证:(1);(2).22(10分)已知椭圆C:(ab0)的两个焦点分别为F1(,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1k32k2,试求m,n满足的关系式.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由诱导公

6、式得,所以 .故选B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.2、B【解析】画出函数图像,根据图像知:,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.3、B【解析】根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题4、C【解析】根据

7、题意,由函数的奇偶性可得,又由,结合函数的单调性分析可得答案【详解】根据题意,函数是定义在上的偶函数,则,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题5、C【解析】因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,于是故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.6、D【解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的

8、连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.7、B【解析】分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以故选:【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.8、D【解析】由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi1i,z ,所以共轭复数=-1+,虚部

9、为1故选D【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题9、B【解析】圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆【详解】因为点在抛物线上,又焦点,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种故选:【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上10、C【解析】由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以

10、,所以,故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.11、B【解析】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.12、C【解析】根据函数的奇偶性及函数在时的符号,即可求解.【详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,排除选项D,故选:C.【点睛】本题主要

11、考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:二项式的展开式中的常数项为,解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题.14、【解析】对首位数的奇偶进行分类讨论,利用分步乘法计数原理和分类加法计数原理可得出结果.【详解】若首位为奇数,则第一、三、五个数位上的数都是奇数,其余三个数位上的数为偶数,此时,符号条件的位自然数个数为个;若首位数为偶数,则首位数不能为,可排在第三或第五个数位上,第二、四、六个数位上的数为奇数,此时,符

12、合条件的位自然数个数为个.综上所述,符合条件的位自然数个数为个.故答案为:.【点睛】本题考查数的排列问题,要注意首位数字的分类讨论,考查分步乘法计数和分类加法计数原理的应用,考查计算能力,属于中等题.15、5【解析】分析:画出可行域,平移直线,当直线经过时,可得有最大值.详解: 画出束条件表示的可行性,如图,由可得,可得,目标函数变形为,平移直线,当直线经过时,可得有最大值,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移

13、变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.16、【解析】初始条件成立方 ;运行第一次:成立;运行第二次:不成立;输出的值:结束所以答案应填:考点:1、程序框图;2、定积分.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) AB的中点的横坐标为;(2)证明见解析;(3)【解析】设.(1)因为直线的倾斜角为,所以直线AB的方程为,联立方程组,消去并整理,得,则,故线段AB的中点的横坐标为(2)根据题意得点,若直线AB的斜率为0,则直线AB的方程为,A、C两点重合,显然M,B,C三点共线;若直线AB的斜率不为0,设直线

14、AB的方程为,联立方程组,消去并整理得,则,设直线BM、CM的斜率分别为、,则,即=,即M,B,C三点共线 (3)根据题意,得直线GH的斜率存在,设该直线的方程为,设,联立方程组,消去并整理,得,由,整理得,又,所以, 结合,得,当时,该直线为轴,即,此时椭圆上任意一点P都满足,此时符合题意; 当时,由,得,代入椭圆C的方程,得,整理,得,再结合,得到,即,综上,得到实数的取值范围是18、 (1)见解析(2) 【解析】试题分析:(1)第(1)问,转化成证明平面 ,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余

15、弦值.试题解析:(1)连接,因为四边形为菱形,所以.因为平面平面,平面平面,平面,所以平面.又平面,所以.因为,所以.因为,所以平面.因为分别为,的中点,所以,所以平面(2)设,由(1)得平面.由,得,.过点作,与的延长线交于点,取的中点,连接,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,所以平面,平面,因为,所以平面平面.所以,解得.在梯形中,易证,分别以,的正方向为轴,轴,轴的正方向建立空间直角坐标系.则,由,及,

16、得,所以,.设平面的一个法向量为,由得令,得m=(3,1,2) 设平面的一个法向量为,由得令,得.所以又因为二面角是钝角,所以二面角的余弦值是.19、()()【解析】()把代入,可得,令,求出其在上的值域,利用对数函数的单调性即可求解.()根据对数函数的单调性可得在上单调递增,再利用二次函数的图像与性质可得解不等式组即可求解.【详解】()当时,此时函数的定义域为.因为函数的最小值为.最大值为,故函数在上的值域为;()因为函数在上单调递减,故在上单调递增,则解得,综上所述,实数的取值范围.【点睛】本题主要考查了利用对数函数的单调性求值域、利用对数型函数的单调区间求参数的取值范围以及二次函数的图像

17、与性质,属于中档题.20、(1)(2)【解析】(1) 利用分段讨论法去掉绝对值,结合图象,从而求得不等式的解集;(2) 求出函数的最小值,把问题化为,从而求得的取值范围.【详解】(1)当时,则所以不等式的解集为.(2)等价于,而,故等价于,所以或,即或,所以实数a的取值范围为.【点睛】本题考查含有绝对值的不等式解法、不等式恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度一般.21、(1)见解析;(2)见解析【解析】(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论【详解】(1),当且仅当a=b=c等号成

18、立,;(2)由基本不等式,同理,当且仅当a=b=c等号成立【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立解题关键是发现基本不等式的形式,方法是综合法22、(1);(2)mn10【解析】试题分析:(1)利用M与短轴端点构成等腰直角三角形,可求得b的值,进而得到椭圆方程;(2)设出过M的直线l的方程,将l与椭圆C联立,得到两交点坐标关系,然后将k1k3表示为直线l斜率的关系式,化简后得k1k32,于是可得m,n的关系式.试题解析:(1)由题意,c,b1,所以a故椭圆C的方程为(2)当直线l的斜率不存在时,方程为x1,代入椭圆得,y不妨设A(1,),B(1,)因为k1k32又k1k32k2,所以k21所以m,n的关系式为1,即mn10当直线l的斜率存在时,设l的方程为yk(x1)将yk(x1)代入,整理得:(3k21)x26k2x3k230设A(x1,y1),B(x2,y2),则又y1k(x11),y2k(x21)所以k1k32所以2k22,所以k21所以m,n的关系式为mn10综上所述,m,n的关系式为mn10.考点:椭圆标准方程,直线与椭圆位置关系,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁