《2022-2023学年云南省昭通市名校中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南省昭通市名校中考数学考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若BOC=40,则D的度数为()A100B110C120D1302如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A点A和点CB点B和点DC点A和点DD点B和点C
2、3不论x、y为何值,用配方法可说明代数式x2+4y2+6x4y+11的值()A总不小于1 B总不小于11C可为任何实数 D可能为负数4一次函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限5如图,在O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:ABCD; AOB=4ACD;弧AD=弧BD;PO=PD,其中正确的个数是()A4B1C2D36关于x的一元二次方程(m2)x2+(2m1)x+m20有两个不相等的正实数根,则m的取值范围是()AmBm且m2Cm2Dm27下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角
3、相等8如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )ABCD9已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k0)的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3 By2y1y3 Cy3y2y1 Dy3y1y210下列函数是二次函数的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1则这位选手五次射击环数的方差为 12已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起
4、始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_厘米13一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_14如图,圆O的直径AB垂直于弦CD,垂足是E,A=22.5,OC=4,CD的长为_15如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_16比较大小:_3(填“”或“”或“”)三、解答题(共8题,共72分)17(8分)如图,四边形ABCD内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接D
5、B,DC,DF求CDE的度数;求证:DF是O的切线;若AC=DE,求tanABD的值18(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间19(8分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点求抛物线的表达式;若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标20(8分)如图所示,正方形
6、网格中,ABC为格点三角形(即三角形的顶点都在格点上)(1)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;(2)把A1B1C1绕点A1按逆时针方向旋转90,在网格中画出旋转后的A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长21(8分)如图,矩形ABCD中,CEBD于E,CF平分DCE与DB交于点F求证:BFBC;若AB4cm,AD3cm,求CF的长22(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:0012:00,下午14:0018:00,每月工作25天;信息二:小王生产甲、乙
7、两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?23(12分)如图,四边形ABCD内接于O,BAD=90,点E在BC的延长线上,且DEC=B
8、AC(1)求证:DE是O的切线;(2)若ACDE,当AB=8,CE=2时,求AC的长24随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这次统计共抽查了_名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为_;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据同弧所对的圆周角是圆心角度数的一半
9、即可解题.【详解】BOC=40,AOB=180,BOC+AOB=220,D=110(同弧所对的圆周角是圆心角度数的一半),故选B.【点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.2、C【解析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.3、A【解析】利用配方法,根据非负数的性质即可解决问题;【详解】解:x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,又(x+3)20,
10、(2y-1)20,x2+4y2+6x-4y+111,故选:A【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.4、B【解析】由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:,函数图象一定经过一、三象限;又,函数与y轴交于y轴负半轴,函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响5、D【解析】根据垂径定理,圆周角的性质定理即可作出判断【详解】P是弦AB的中点,CD是过点P的直径ABCD,弧AD=弧BD,故正确,正确;AOB=2AOD=4ACD,故正确P是OD上的任意一点,
11、因而不一定正确故正确的是:故选:D【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.6、D【解析】根据一元二次方程的根的判别式的意义得到m20且(2m1)24(m2)(m2) 0,解得m且m2,再利用根与系数的关系得到, m20,解得m2,即可求出答案【详解】解:由题意可知:m20且(2m1)24(m2)212m150,m且m2,(m2)x2+(2m1)x+m20有两个不相等的正实数根,0,m20,m2,m,m2,故选:D【点睛】本题主要考查对根的判别式和根与系数的
12、关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键7、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D8、B【解析】根据俯视图可确定主视图的列数和每列小正方体的个数【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图9、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限
13、内,y随x的增大而增大,A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1x20x3,y3y1y2;故选D.考点:反比例函数的性质.10、C【解析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解【详解】A. y=x是一次函数,故本选项错误;B. y=是反比例函数,故本选项错误;C.y=x-2+x2是二次函数,故本选项正确;D.y= 右边不是整式,不是二次函数,故本选项错误.故答案选C.【点睛】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.二、填空题(本大题共6个小题,每小题3分,共18分)11、2.【解析】试题分析:五次射击的
14、平均成绩为=(5+7+8+6+1)=7,方差S2=(57)2+(87)2+(77)2+(67)2+(17)2=2考点:方差12、1或5.【解析】小正方形的高不变,根据面积即可求出小正方形平移的距离【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为221,如图,小正方形平移距离为1厘米;如图,小正方形平移距离为4+15厘米故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变画出图形即可直观解答13、 【解析】用黑球的个数除以总球的个数即可得出黑球的概率【详解】解:袋子中共有5个球,有2个黑球,从袋子中随机摸出一个球,它是黑球的概率为;故答案为【点睛】
15、本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=14、【解析】试题分析:因为OC=OA,所以ACO=,所以AOC=45,又直径垂直于弦,所以CE=,所以CD=2CE=考点:1解直角三角形、2垂径定理15、【解析】由正六边形的性质得出AB=BC=AF,ABC=BAF=120,由等腰三角形的性质得出ABF=BAC=BCA=30,证出AG=BG,CBG=90,由含30角的直角三角形的性质得出CG=2BG=2AG,即可得出答案【详解】六边形ABCDEF是正六边形,ABBCAF,ABCBAF120,ABFBACBCA30,AGBG,
16、CBG90,CG2BG2AG,;故答案为:【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30角的直角三角形的性质是解题的关键16、.【解析】先利用估值的方法先得到3.4,再进行比较即可.【详解】解:3.4,3.43.3.故答案为:.【点睛】本题考查了实数的比较大小,对进行合理估值是解题的关键.三、解答题(共8题,共72分)17、(1)90;(1)证明见解析;(3)1【解析】(1)根据圆周角定理即可得CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证ODF=ODC+FDC=OCD+DCF=90,即可判定DF是
17、O的切线;(3)根据已知条件易证CDEADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tanABD的值即可【详解】解:(1)解:对角线AC为O的直径,ADC=90,EDC=90;(1)证明:连接DO,EDC=90,F是EC的中点,DF=FC,FDC=FCD,OD=OC,OCD=ODC,OCF=90,ODF=ODC+FDC=OCD+DCF=90,DF是O的切线;(3)解:如图所示:可得ABD=ACD,E+DCE=90,DCA+DCE=90,DCA=E,又ADC=CDE=90,CDEADC,DC1=ADDEAC=1DE,设DE=x,则AC=1x,则AC1AD1=A
18、DDE,期(1x)1AD1=ADx,整理得:AD1+ADx10x1=0,解得:AD=4x或4.5x(负数舍去),则DC=,故tanABD=tanACD=18、(4)500;(4)440,作图见试题解析;(4)4.4【解析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,本次调查共抽样了500名学生; (4)4.5小时的人数为:5004.4=440(人),如图所示:(4)根
19、据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时考点:4频数(率)分布直方图;4扇形统计图;4加权平均数19、为;点Q的坐标为或【解析】依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标【详解】抛物线顶点A的横坐标是,即,解得将代入得:,抛物线的解析式为抛物线向下平移了4个单位平移后抛物线的解析式为,点O在PQ的垂直平分线上又轴,点Q与点P
20、关于x轴对称点Q的纵坐标为将代入得:,解得:或点Q的坐标为或【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键20、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)
21、如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算21、(1)见解析,(2)CFcm.【解析】(1)要求证:BF=BC只要证明CFB=FCB就可以,从而转化为证明BCE=BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角BCD中,根据三角形的面积等于BDCE=BCDC,就可以求出CE的长要求CF的长,可以在直角CEF中用勾股定理求得其中EF=BF-BE,BE在直角BCE中根据勾股定理就可以
22、求出,由此解决问题【详解】证明:(1)四边形ABCD是矩形,BCD90,CDB+DBC90CEBD,DBC+ECB90ECBCDBCFBCDB+DCF,BCFECB+ECF,DCFECF,CFBBCFBFBC(2)四边形ABCD是矩形,DCAB4(cm),BCAD3(cm)在RtBCD中,由勾股定理得BD又BDCEBCDC,CEBEEFBFBE3CFcm【点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题22、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生
23、产甲、乙两种产品分别60,555件【解析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值(2)设生产甲种产品用x分,则生产乙种产品用(25860-x)分,分别求出甲乙两种生产多少件产品【详解】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分(2)设生产甲种产品共用x分,则生产乙种产品用(25860-x)分则生产甲种产品件,生产乙种产品件w总额=1.5+2.8=0.1x+2.8=0.1x+1680-0.14x=-0.04x+1680,又60,得x900,由一次函数的增减
24、性,当x=900时w取得最大值,此时w=0.04900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件【点睛】考查了一次函数和二元一次方程组的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解23、(1)证明见解析;(2)AC的长为【解析】(1)先判断出BD是圆O的直径,再判断出BDDE,即可得出结论;(2)先判断出ACBD,进而求出BCAB8,进而判断出BCDDCE,求出CD,再用勾股定理求出BD,最后
25、判断出CFDBCD,即可得出结论【详解】(1)如图,连接BD,BAD=90,点O必在BD上,即:BD是直径,BCD=90,DEC+CDE=90DEC=BAC,BAC+CDE=90BAC=BDC,BDC+CDE=90,BDE=90,即:BDDE点D在O上,DE是O的切线;(2)DEACBDE=90,BFC=90,CB=AB=8,AF=CF=AC,CDE+BDC=90,BDC+CBD=90,CDE=CBDDCE=BCD=90,BCDDCE,CD=1在RtBCD中,BD=1,同理:CFDBCD,CF=,AC=2C=【点睛】考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理
26、,求出BC8是解本题的关键24、(1)100,108;(2)答案见解析;(3)600人.【解析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,此次共抽查了:2020%=100人.喜欢用QQ沟通所占比例为:,QQ的扇形圆心角的度数为:360=108. (2)喜欢用短信的人数为:1005%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:100%=40%.该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:150040%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据