《2022-2023学年山东省济宁市鲁桥一中学中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省济宁市鲁桥一中学中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1点P(4,3)关于原点对称的点所在的象限是()A第四象限B第三象限C第二象限D第一象限2如图,函数ykxb(k0)与y (m0)的图象交于点A(2,3),B(6,1),则不等式kxb的解集为()ABCD3如图,菱形ABCD的对角线交于点O,AC=8
2、cm,BD=6cm,则菱形的高为()A cmBcmCcmD cm4如图,将ABC 绕点C顺时针旋转,使点B落在AB边上点B处,此时,点A的对应点 A恰好落在 BC 边的延长线上,下列结论错误的是( )ABCB=ACABACB=2BCBCA=BACDBC 平分BBA52018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A18108 B1.8108 C1.8109 D0.1810106已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )A
3、BCD7如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1若设道路的宽为xm,则下面所列方程正确的是()A(311x)(10x)=570B31x+110x=3110570C(31x)(10x)=3110570D31x+110x1x1=5708若数a使关于x的不等式组有解且所有解都是2x+60的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A5B4C3D29是两个连续整数,若,则分别是( ).A2,3B3,2C3,4D6,810若正比例函数y=3x的图象经过A(2,y1),B(1,y2)两点,则
4、y1与y2的大小关系为()Ay1y2By1y2Cy1y2Dy1y211函数的自变量x的取值范围是( )ABCD12若=1,则符合条件的m有()A1个B2个C3个D4个二、填空题:(本大题共6个小题,每小题4分,共24分)13双察下列等式:,则第n个等式为_(用含n的式子表示)14计算:(2018)0=_15圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_cm116如图,在ABC中,ABAC,A36, BD平分ABC交AC于点D,DE平分BDC交BC于点E,则 17按照一定规律排列依次为,.按此规律,这列数中的第100个数是_18菱形的两条对角线长分别是方程的两实根,则菱形的面积为_
5、三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知ABC 中,AD 是BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H(1)如图 1,若BAC=60直接写出B 和ACB 的度数;若 AB=2,求 AC 和 AH 的长;(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明20(6分)如图,在ABC中,ACB=90,点D是AB上一点,以BD为直径的O和AB相切于点P(1)求证:BP平分ABC;(2)若PC=1,AP=3,求BC的长21(6分)如图,在中,点在上运动,点在上,始终保持与相等,
6、的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,求线段的长.22(8分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45方向,然后沿北偏东37方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离(结果保留整数)参考数据:sin370.60,cos37=0.80,tan370.7523(8分)已知:如图,在四边形ABCD中,ADBC,点E为CD边上一点,AE与BE分别为DAB和CBA的平分线(1)作线段AB的垂直平分线交AB于点O,并以AB为直径作O(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,O交边AD
7、于点F,连接BF,交AE于点G,若AE4,sinAGF,求O的半径24(10分)在ABC中,BAC=90,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使DAE=90,连接CE探究:如图,当点D在线段BC上时,证明BC=CE+CD应用:在探究的条件下,若AB=,CD=1,则DCE的周长为 拓展:(1)如图,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为 (2)如图,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 25(10分)计算:4sin30+(1)0|2|+()226(12分)(1)解方程:x25x6
8、=0;(2)解不等式组:27(12分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点(1)判断:一个内角为120的菱形等距四边形(填“是”或“不是”)(2)如图2,在55的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长端点均为非等距点的对角线长为 端点均为非等距点的对角线长为(3)如图1,已知ABE与CDE都是等腰直角三角形,AEB=DEC=90,连结AD,AC,BC,若四边
9、形ABCD是以A为等距点的等距四边形,求BCD的度数参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】由题意得点P的坐标为(4,3),根据象限内点的符号特点可得点P1的所在象限【详解】设P(4,3)关于原点的对称点是点P1,点P1的坐标为(4,3),点P1在第二象限故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(,+)的点在第二象限2、B【解析】根据函数的图象和交点坐标即可求得结果【详解】解:不等式kx+b 的解集为:-6x0或x2,故选B【点睛】此题考查反比例函数与一次函数的交点
10、问题,解题关键是注意掌握数形结合思想的应用3、B【解析】试题解析:菱形ABCD的对角线 根据勾股定理, 设菱形的高为h,则菱形的面积 即 解得 即菱形的高为cm故选B4、C【解析】根据旋转的性质求解即可【详解】解:根据旋转的性质,A:与均为旋转角,故=,故A正确;B:,又,故B正确;D:,BC平分BBA,故D正确.无法得出C中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件5、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;
11、当原数的绝对值1时,n是负数【详解】解:1800000000=1.8109,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、A【解析】此题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(311x)(10x)=570,故选A.8、D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解
12、,确定出满足题意整数a的值即可【详解】不等式组整理得:,由不等式组有解且都是2x+60,即x-3的解,得到-3a-13,即-2a4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键9、A【解析】根据,可得答案【详解】根据题意,可知,可得a=2,b=1故选A【点睛】本题考查了估算无理数的大小,明确是解题关键10、A【解析】分别把点A(1,y1),点B(1,y1)代入函数y3x,求出点y1,y1的值,并比较出其大
13、小即可【详解】解:点A(1,y1),点B(1,y1)是函数y3x图象上的点,y16,y13,36,y1y1故选A【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式11、D【解析】根据二次根式的意义,被开方数是非负数【详解】根据题意得,解得故选D【点睛】本题考查了函数自变量的取值范围的确定和分式的意义函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数12、C【解析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有
14、关m的等式,即可得出.【详解】=1 m2-9=0或m-2= 1 即m= 3或m=3,m=1 m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】探究规律后,写出第n个等式即可求解【详解】解:则第n个等式为 故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.14、1【解析】根据零指数幂:a0=1(a0)可得答案【详解】原式=1,故答案为:1【点睛】此题主要考查了零次幂,关键是掌握计算公式15、10【解析】解
15、:根据圆锥的侧面积公式可得这个圆锥的侧面积=145=10(cm1)故答案为:10【点睛】本题考查圆锥的计算16、【解析】试题分析:因为ABC中,ABAC,A36所以ABC=ACB=72因为BD平分ABC交AC于点D所以ABD=CBD=36=A因为DE平分BDC交BC于点E所以CDE=BDE=36=A所以AD=BD=BC根据黄金三角形的性质知,,,所以考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36,每个底角为72.它的腰与它的底成黄金比当底角被平分时,角平分线分对边也成黄金比,17、【解析】根据按一定规律排列的一列数依次为,可得第n个数为,据此可得第100个数【详解】由题意,数
16、列可改写成,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,第n个数为,这列数中的第100个数为;故答案为:【点睛】本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.18、2【解析】解:x214x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1所以菱形的面积为:(61)2=2菱形的面积为:2故答案为2点睛:本题考查菱形的性质菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)45,;(2)线段 AH 与 AB+AC 之间的
17、数量关系:2AH=AB+AC证明见解析.【解析】(1)先根据角平分线的定义可得BAD=CAD=30,由等腰三角形的性质得B=75,最后利用三角形内角和可得ACB=45;如图 1,作高线 DE,在 RtADE 中,由DAC=30,AB=AD=2 可得 DE=1,AE=, 在 RtCDE 中,由ACD=45,DE=1,可得 EC=1,AC= +1,同理可得 AH 的长;(2)如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH,易证ACHAFH,则 AC=AF,HC=HF, 根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论【详解】(1)AD 平分BAC
18、,BAC=60,BAD=CAD=30,AB=AD,B=75,ACB=1806075=45;如图 1,过 D 作 DEAC 交 AC 于点 E, 在 RtADE 中,DAC=30,AB=AD=2,DE=1,AE=,在 RtCDE 中,ACD=45,DE=1,EC=1,AC=+1,在 RtACH 中,DAC=30,CH=AC=AH=;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC证明:如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH 易证ACHAFH,AC=AF,HC=HF,GHBC,AB=AD,ABD=ADB,AGH=AHG,AG=AH,AB+A
19、C=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键20、(1)证明见解析;(2) 【解析】试题分析:(1)连接OP,首先证明OPBC,推出OPB=PBC,由OP=OB,推出OPB=OBP,由此推出PBC=OBP;(2)作PHAB于H首先证明PC=PH=1,在RtAPH中,求出AH,由APHABC,求出AB、BH,由RtPBCRtPBH,推出BC=BH即可解决问题.试题解析:(1)连接OP,AC是
20、O的切线,OPAC, APO=ACB=90,OPBC,OPB=PBC,OP=OB,OPB=OBP,PBC=OBP,BP平分ABC;(2)作PHAB于H则AHP=BHP=ACB=90,又PBC=OBP,PB=PB,PBCPBH ,PC=PH=1,BC=BH,在RtAPH中,AH=,在RtACB中,AC2+BC2=AB2(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得 21、(1)理由见解析;(2)【解析】(1)根据得到A=PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;(2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结
21、论【详解】(1)理由如下,垂直平分,即.(2)连接,设,由(1)得,又,解得,即【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键22、景点A与B之间的距离大约为280米【解析】由已知作PCAB于C,可得ABP中A=37,B=45且PA=200m,要求AB的长,可以先求出AC和BC的长【详解】解:如图,作PCAB于C,则ACP=BCP=90,由题意,可得A=37,B=45,PA=200m在RtACP中,ACP=90,A=37,AC=APcosA=2000.80=160,PC=APsinA=2000.60=1在RtBPC中,BCP=90,B=45,BC
22、=PC=1AB=AC+BC=160+1=280(米)答:景点A与B之间的距离大约为280米【点睛】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线23、(1)作图见解析;(2)O的半径为.【解析】(1)作出相应的图形,如图所示;(2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到AGF=AEB,根据sinAGF的值,确定出sinAEB的值,求出AB的长
23、,即可确定出圆的半径【详解】解:(1)作出相应的图形,如图所示(去掉线段BF即为所求) (2)ADBC,DABCBA180.AE与BE分别为DAB与CBA的平分线,EABEBA90,AEB90.AB为O的直径,点F在O上,AFB90,FAGFGA90.AE平分DAB,FAGEAB,AGFABE,sinABEsinAGF.AE4,AB5,O的半径为.【点睛】此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键24、探究:证明见解析;应用:;拓展:(1)BC= CD-CE,(2)BC= CE-CD【解析】试题
24、分析:探究:判断出BAD=CAE,再用SAS即可得出结论;应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;拓展:(1)同探究的方法得出ABDACE,得出BD=CE,即可得出结论;(2)同探究的方法得出ABDACE,得出BD=CE,即可得出结论试题解析:探究:BAC=90,DAE=90,BAC=DAEBAC=BAD+DAC,DAE=CAE+DAC,BAD=CAEAB=AC,AD=AE,ABDACEBD=CEBC=BD+CD,BC=CE+CD应用:在RtABC中,AB=AC=,ABC=ACB=45,BC=2,CD=1,BD=BC-CD=1,由探究知,ABDACE,ACE=ABD
25、=45,DCE=90,在RtBCE中,CD=1,CE=BD=1,根据勾股定理得,DE=,DCE的周长为CD+CE+DE=2+故答案为2+拓展:(1)同探究的方法得,ABDACEBD=CEBC=CD-BD=CD-CE,故答案为BC=CD-CE;(2)同探究的方法得,ABDACEBD=CEBC=BD-CD=CE-CD,故答案为BC=CE-CD25、1.【解析】按照实数的运算顺序进行运算即可.【详解】原式 =1【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.26、(1)x1=6,x2=1;(2)1x1【解析】(1)先分解因式,即
26、可得出两个一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式组的解集即可【详解】(1)x25x6=0,(x6)(x+1)=0,x6=0,x+1=0,x1=6,x2=1;(2)解不等式得:x1,解不等式得:x1,不等式组的解集为1x1【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键27、(1)是;(2)见解析;(3)150【解析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS证明AECBED,得出
27、AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,ABD是等边三角形,得出DAB=60,由SSS证明AEDAEC,得出CAE=DAE=15,求出DAC=CAE+DAE=30,BAC=BAECAE=30,由等腰三角形的性质和三角形内角和定理求出ACB和ACD的度数,即可得出答案【详解】解:(1)一个内角为120的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得: 在图3中,由勾股定理得: 故答案为 (3)解:连接BD如图1所示:ABE与CDE都是等腰直角三角形,DE=EC,AE=EB,DEC+BEC=AEB+BEC,即AEC=DEB,在AEC和
28、BED中, ,AECBED(SAS),AC=BD,四边形ABCD是以A为等距点的等距四边形,AD=AB=AC,AD=AB=BD,ABD是等边三角形,DAB=60,DAE=DABEAB=6045=15,在AED和AEC中, AEDAEC(SSS),CAE=DAE=15,DAC=CAE+DAE=30,BAC=BAECAE=30,AB=AC,AC=AD,BCD=ACB+ACD=75+75=150【点睛】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键