2022-2023学年云南省玉龙纳西族自治县第一中学高三六校第一次联考数学试卷含解析.doc

上传人:茅**** 文档编号:87795233 上传时间:2023-04-17 格式:DOC 页数:19 大小:1.95MB
返回 下载 相关 举报
2022-2023学年云南省玉龙纳西族自治县第一中学高三六校第一次联考数学试卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年云南省玉龙纳西族自治县第一中学高三六校第一次联考数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年云南省玉龙纳西族自治县第一中学高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南省玉龙纳西族自治县第一中学高三六校第一次联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于( )ABC2或D2或2已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D1095

2、3已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则( )AB2CD34已知复数(为虚数单位)在复平面内对应的点的坐标是( )ABCD5中,角的对边分别为,若,则的面积为( )ABCD6已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( )ABCD7执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为( )A1B2C3D48已知函数的值域为,函数,则的图象的对称中心为( )ABCD9设数列的各项均为正数,前项和为,且,则( )A128B65C64D6310某装饰公司制作一种扇形板状装饰品,其圆心角为120

3、,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米11已知正项数列满足:,设,当最小时,的值为( )ABCD12是虚数单位,则( )A1B2CD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若函数有个不同的零点,则的取值范围是_14若曲线(其中常数)在点处的切线的斜率为1,则_.15有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有_种; _;16在三棱锥中,三条侧棱两两垂直,则三棱锥外接

4、球的表面积的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:18(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值该项指标值落在内的产品视为合格品,否则为不合格品乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲

5、生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87919(12分)已知,均为给定的大于1的自然数,设集合,()当,时,用列举法表示集合;()当时,且集合满足下列条件:对任意,;证明:()若,则(集合为集合在集合中的

6、补集);()为一个定值(不必求出此定值);()设,其中,若,则20(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.21(12分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.22(10分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,

7、只有一项是符合题目要求的。1、C【解析】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.2、D【解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【点睛】本题考查数列分组求和,掌握

8、等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的3、B【解析】过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,由抛物线定义知:,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.4、A【解析】直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【详解】解:,在复平面内对应的点的坐标是.故选:A.【点睛】本题考查复数代数形式

9、的乘除运算,考查复数的代数表示法及其几何意义,属于基础题5、A【解析】先求出,由正弦定理求得,然后由面积公式计算【详解】由题意,由得,故选:A【点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解6、A【解析】根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意, ,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合

10、应用,涉及不等式的解法,属于综合题.7、C【解析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1考点:程序框图8、B【解析】由值域为确定的值,得,利用对称中心列方程求解即可【详解】因为,又依题意知的值域为,所以 得,所以,令,得,则的图象的对称中心为.故选:B【点睛】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为09、D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列

11、的前n项和公式,还考查了运算求解的能力,属于中档题.10、B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.11、B【解析】由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.12、C【解析】由复数除法的运算

12、法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,所以14、【解析】利用导数的几何意义,由解方程即可.【详解】由已知,所以,解得.故答案为:.【点睛】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.15、36 ;1. 【解析】的可能取值为0,1,2,3,对应的排法有:.分别求出,由此能求出.【详解】解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则的可能取值为0,1,

13、2,3,对应的排法有:.对应的排法有36种;,故答案为:36;1.【点睛】本题考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题.16、【解析】设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积【详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方记外接球半径为,当时,故答案为:【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极大值,极小值;(2)

14、详见解析.【解析】首先确定函数的定义域和;(1)当时,根据的正负可确定单调性,进而确定极值点,代入可求得极值;(2)通过分析法可将问题转化为证明,设,令,利用导数可证得,进而得到结论.【详解】由题意得:定义域为,(1)当时,当和时,;当时,在,上单调递增,在上单调递减,极大值为,极小值为.(2)要证:,即证:,即证:,化简可得:,即证:,设,令,则,在上单调递增,则由,从而有:.【点睛】本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等式证明的关键是能够将多个变量的问题转化为一个变量的问题,通过构造函数的方式将问题转化为函数最值的求解问题.18、(1)0.

15、0081(2)见解析,保留乙生产线较好【解析】(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:(2)列联表:甲生产线乙生产线合计合格品9096186不合格品104

16、14合计100100200的观测值,有90%把握认为该企业生产的这种产品的质量指标值与生产线有关由(1)知甲生产线的合格率为0.9,乙生产线的合格率为,保留乙生产线较好【点睛】此题考查独立重复性检验二项分布概率,独立性检验等知识点,认准特征代入公式即可,属于较易题目.19、();()()详见解析()详见解析.()详见解析.【解析】()当,时,即可得出()(i)当时,2,3,又,必然有,否则得出矛盾(ii)由可得又,即可得出为定值(iii)由设,其中,2,可得,通过求和即可证明结论【详解】()解:当,时,()证明:(i)当时,2,3,又,必然有,否则,而,与已知对任意,矛盾因此有(ii),为定值

17、(iii)由设,其中,2,【点睛】本题主要考查等差数列与等比数列的通项公式求和公式,考查了推理能力与计算能力,属于难题20、(1);(2)【解析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2)将直线参数方程代入圆的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】(1)直线的参数方程为(为参数),消去;得曲线的极坐标方程为.由,可得,即曲线的直角坐标方程为;(2)将直线的参数方程(为参数)代入的方程,可得,设,是点对应的参数值,则.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.21、(1) (2)【解析】(

18、1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【详解】(1)依题意,为真,则无解,即无解;令,则,故当时,单调递增,当, 单调递减,作出函数图象如下所示,观察可知,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【点睛】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通

19、过解方程或不等式(组)求出参数的值或范围22、(1)(2)【解析】(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,再求得的面积.【详解】(1)因为直线过点,且斜率.所以直线的方程为,即,所以圆心到直线的距离为, 又因为,圆的半径为,所以,即,解之得,或(舍去).所以,所以所示椭圆的方程为 .(2)由(1)得,椭圆的右准线方程为,离心率,则点到右准线的距离为,所以,即,把代入椭圆方程得,因为直线的斜率,所以, 因为直线经过和,所以直线的方程为,联立方程组得,解得或,所以, 所以的面积.【点睛】本题主要考查直线和圆、椭圆的位置关系,考查椭圆的方程的求法,考查三角形面积的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁