《2022-2023学年内蒙古根河市重点中学高三3月份第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年内蒙古根河市重点中学高三3月份第一次模拟考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D112如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分
2、点,则( )ABCD3已知集合(),若集合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD4已知,则( )ABCD5已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD6如图,平面与平面相交于,点,点,则下列叙述错误的是( )A直线与异面B过只有唯一平面与平行C过点只能作唯一平面与垂直D过一定能作一平面与垂直7点为的三条中线的交点,且,则的值为( )ABCD8已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为( )ABCD9某人20
3、18年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为( )A元B元C元D元10已知且,函数,若,则( )A2BCD11已知命题:任意,都有;命题:,则有则下列命题为真命题的是()ABCD12已知双曲线 (a0,b0)的右焦点为F,若过点F且倾斜角为60的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是( )AB(1,2),CD二、填空题:本题共4小题,每小题5分,共20分。13如图是一个几何体的三视图,若它的体积是,则_ ,该几何体的表面积为 _14某校初三年级共有名
4、女生,为了了解初三女生分钟“仰卧起坐”项目训练情况,统计了所有女生分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则分钟至少能做到个仰卧起坐的初三女生有_个15如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为_.16在的展开式中,常数项为_.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图所示,在四棱锥中,平面,底面ABCD满足ADBC,E为AD的中点,AC与BE的交点为O.(1)设H是线段BE上的动点,证明:三棱锥的体积是定值;(2)求四棱锥的体积;(3)求直线BC与平面PBD所成角的余弦值18(
5、12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.19(12分)如图所示,直角梯形ABCD中,四边形EDCF为矩形,平面平面ABCD(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值(3)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的长,若不存在,请说明理由20(12分)已知两数(1)当时,求函数的极值点;(2)当时,若恒成立,求的最大值21(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增
6、长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况现分别从、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为从、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)22(10分)如图,在直三棱柱中,点分别为和的中点.(
7、)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.()求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意计算,解不等式得到答案.【详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.2、B【解析】,将,代入化简即可.【详解】.故选:B.【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查
8、学生的运算能力,是一道中档题.3、C【解析】根据题目中的基底定义求解.【详解】因为,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.4、D【解析】根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,所以,所以A,B两项均错;又,所以,所以C错;对于D,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些
9、特殊的数据得到具体值,进而得到大小关系.5、B【解析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当且仅当时取等号,此时,点在以为焦点的椭圆上,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解6、D【解析】根据异面直线的判定定理、
10、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.7、B【解析】可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出【详解】如图:点为的三条中线的交点,由可得:,又因,.故选:B【点睛】本题考查三角形重心的定义及性
11、质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.8、A【解析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程【详解】抛物线y22px(p0)的焦点坐标为(1,0),则p2,又ep,所以e2,可得c24a2a2+b2,可得:ba,所以双曲线的渐近线方程为:y故选:A【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用9、A【解析】根据 2018年的家庭总收人为元,且就医费用占 得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医
12、费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占 所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.10、C【解析】根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,则,则.即.故选:C.【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.11、B【解析
13、】先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则 不成立.则,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.12、A【解析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率根据这个结论可以求出双曲线离心率的取值范围【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,离心率,故选:【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件二、填空题:本题共4小题,每
14、小题5分,共20分。13、;【解析】试题分析:如图:此几何体是四棱锥,底面是边长为的正方形,平面平面,并且,所以体积是,解得,四个侧面都是直角三角形,所以计算出边长,表面积是考点:1三视图;2几何体的表面积14、【解析】根据数据先求出,再求出分钟至少能做到个仰卧起坐的初三女生人数即可.【详解】解:,.则分钟至少能做到个仰卧起坐的初三女生人数为.故答案为:.【点睛】本题主要考查频率分布直方图,属于基础题.15、20【解析】由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.【详解】由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高
15、为4的圆柱组合而成,其体积为.故答案为:20.【点睛】本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.16、【解析】的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析 (2) (3)【解析】(1)因为底面ABCD为梯形,且,所以四边形BCDE为平行四边形,则BECD,又平面,平面,所以平面, 又因为H为线段BE上的动点,的面积是定值,从而三棱锥的体积是定值. (2)因为平面,所以,结合B
16、ECD,所以,又因为,且E为AD的中点,所以四边形ABCE为正方形,所以,结合,则平面,连接,则, 因为平面,所以,因为,所以是等腰直角三角形,O为斜边AC上的中点,所以,且,所以平面,所以PO是四棱锥的高,又因为梯形ABCD的面积为,在中,所以.(3)以O为坐标原点,建立空间直角坐标系,如图所示,则B(,0,0),C(0,0),D(,0),P(0,0,),则,设平面PBD的法向量为,则即则,令,得到, 设BC与平面PBD所成的角为,则,所以,所以直线BC与平面PBD所成角的余弦值为18、(1)见解析(2)【解析】(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平
17、面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、
18、(I)见解析(II)(III)【解析】试题分析:()取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,由题意可得平面的法向量,且,据此有,则平面()由题意可得平面的法向量,结合()的结论可得,即平面与平面所成锐二面角的余弦值为()设,则,而平面的法向量,据此可得,解方程有或据此计算可得试题解析:()取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,如图,则,设平面的法向量,不妨设,又,又平面,平面(),设平面的法向量,不妨设,平面与平面所成锐二面角的余弦值为()设 ,又平面的法向量,或当时,;当时,综上,20、(1)唯一的极大值点1,无极小值点(2)1【解析】(1)求出导函数,求得
19、的解,确定此解两侧导数值的正负,确定极值点;(2)问题可变形为恒成立,由导数求出函数的最小值,时,无最小值,因此只有,从而得出的不等关系,得出所求最大值【详解】解:(1)定义域为,当时,令得,当所以在上单调递增,在上单调递减,所以有唯一的极大值点,无极小值点(2)当时,若恒成立,则恒成立,所以恒成立,令,则,由题意,函数在上单调递减,在上单调递增,所以,所以所以,所以,故的最大值为1【点睛】本题考查用导数求函数极值,研究不等式恒成立问题在求极值时,由确定的不一定是极值点,还需满足在两侧的符号相反不等式恒成立深深转化为求函数的最值,这里分离参数法起关键作用21、(1);(2);(3)【解析】设事
20、件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、,可得出.(1)设事件为“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得结果;(2)设事件为“甲的高度大于乙的高度”,列举出符合题意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根据题意直接判断和的大小即可.【详解】设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、由题意可知,、(1)设事件为“丙的高度小于厘米”,由题意知,又与互斥,所以事件的概率;(2)设事件为“甲的高度大于乙的高度”由题意知所以事件的概率;(3).【点睛】本题考查概
21、率的求法,考查互斥事件加法公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是中等题22、()存在点满足题意,且,证明详见解析;().【解析】()可考虑采用补形法,取的中点为,连接,可结合等腰三角形性质和线面垂直性质,先证平面,即,若能证明,则可得证,可通过我们反推出点对应位置应在处,进而得证;()采用建系法,以为坐标原点,以分别为轴建立空间直角坐标系,分别求出两平面对应法向量,再结合向量夹角公式即可求解;【详解】()存在点满足题意,且.证明如下:取的中点为,连接.则,所以平面.因为是的中点,所以.在直三棱柱中,平面平面,且交线为,所以平面,所以.在平面内,所以,从而可得.又因为,所以平面.因为平面,所以平面平面.()如图所示,以为坐标原点,以分别为轴建立空间直角坐标系.易知,所以,.设平面的法向量为,则有取,得.同理可求得平面的法向量为.则.由图可知二面角为锐角,所以其余弦值为.【点睛】本题考查面面垂直的判定定理、向量法求二面角的余弦值,属于中档题