2023届吉林省长春市东北师大附中新城校中考联考数学试卷含解析.doc

上传人:茅**** 文档编号:87792773 上传时间:2023-04-17 格式:DOC 页数:18 大小:1.19MB
返回 下载 相关 举报
2023届吉林省长春市东北师大附中新城校中考联考数学试卷含解析.doc_第1页
第1页 / 共18页
2023届吉林省长春市东北师大附中新城校中考联考数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届吉林省长春市东北师大附中新城校中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届吉林省长春市东北师大附中新城校中考联考数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算正确的是()Aa3a2aBa2a3a6C(ab)2a2b2D(a2)3a62如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A10B9C8D73二次函数y=a

2、x2+bx+c(a0)的图象如图,则反比例函数y=与一次函数y=bxc在同一坐标系内的图象大致是( )ABCD4如图,已知ABC中,ABC=45,F是高AD和BE的交点,CD=4,则线段DF的长度为( )AB4CD5周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园图中描述了小丽路上的情景,下列说法中错误的是()A小丽从家到达公园共用时间20分钟B公园离小丽家的距离为2000米C小丽在便利店时间为15分钟D便利店离小丽家的距离为1000米6如图所示,如果将一副三角板按如图方式

3、叠放,那么 1 等于( )ABCD7一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()ABCD8如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )AMBNCPDQ9如图,将ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若DOF142,则C的度数为()A38B39C42D4810的立方根是( )A8B4C2D不存在二、填空题(共7小题,每小题3分,满分21分)11若一个多边形的每一个外角都等于 40,则这个多边形的内角和是_.12如图,在ABCD中,AB

4、=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=_13计算:_14若直角三角形两边分别为6和8,则它内切圆的半径为_15如图,在矩形ABCD中,E是AD边的中点,垂足为点F,连接DF,分析下列四个结论:;其中正确的结论有_16一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为_17如图,ABC是直角三角形,C=90,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tanOCB=_三、解答题(共7小题,满分69分)18(10分)如图,在梯形中,,点为边上一动点,作,垂足在边上,以点为圆心,为半

5、径画圆,交射线于点.(1)当圆过点时,求圆的半径;(2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;(3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.19(5分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF(1)求证:四边形ACDF是平行四边形;(2)当CF平分BCD时,写出BC与CD的数量关系,并说明理由20(8分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.(1)请写出两个“关于轴对称的二次函数”;(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点

6、坐标(用含的式子表示).21(10分)已知2是关于x的方程x22mx+3m0的一个根,且这个方程的两个根恰好是等腰ABC的两条边长,则ABC的周长为_22(10分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解根据调查统计结果,绘制了如图所示的不完整的三种统计图表对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D部分扇形所对应的圆心角是 ;(3)请补

7、全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平23(12分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上(I)AC的长等于_(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分ABC的面积请在如图所示的网格中,用无刻度的直尺

8、,画出这两条直线,并简要说明这两条直线的位置是如何找到的_(不要求证明)24(14分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】各项计算得到结果,即可作出判断解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a22ab+b2,不符

9、合题意;D、原式=a6,符合题意,故选D2、D【解析】分析:先根据多边形的内角和公式(n2)180求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360求出完成这一圆环需要的正五边形的个数,然后减去3即可得解详解:五边形的内角和为(52)180=540,正五边形的每一个内角为5405=18,如图,延长正五边形的两边相交于点O,则1=360183=360324=36,36036=1已经有3个五边形,13=7,即完成这一圆环还需7个五边形 故选D 点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数

10、是解题的关键,注意需要减去已有的3个正五边形3、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【详解】解:观察二次函数图象可知:开口向上,a1;对称轴大于1,1,b1;二次函数图象与y轴交点在y轴的正半轴,c1反比例函数中ka1,反比例函数图象在第二、四象限内;一次函数ybxc中,b1,c1,一次函数图象经过第二、三、四象限故选C【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反

11、比例函数、一次函数系数与图象的关系即可得出结论4、B【解析】求出ADBD,根据FBDC90,CADC90,推出FBDCAD,根据ASA证FBDCAD,推出CDDF即可【详解】解:ADBC,BEAC,ADB=AEB=ADC=90,EAF+AFE=90,FBD+BFD=90,AFE=BFD,EAF=FBD,ADB=90,ABC=45,BAD=45=ABC,AD=BD,在ADC和BDF中 ,ADCBDF,DF=CD=4,故选:B【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件5、C【解析】解:A小丽从家到达公园共用时间20分钟,正确;B公园离小丽家的距离为2000米,正确;C小

12、丽在便利店时间为1510=5分钟,错误;D便利店离小丽家的距离为1000米,正确故选C6、B【解析】解:如图,2=9045=45,由三角形的外角性质得,1=2+60=45+60=105故选B 点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键7、B【解析】根据题中给出的函数图像结合一次函数性质得出a0,b0,再由反比例函数图像性质得出c0,从而可判断二次函数图像开口向下,对称轴:0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:一次函数y=ax+b图像过一、二、四, a0,b0, 又反比例 函数y=图像经过二、四象限, c0, 二次函数对称轴

13、:0, 二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键8、A【解析】解:点P所表示的数为a,点P在数轴的右边,-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,数-3a所对应的点可能是M,故选A点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍9、A【解析】分析:根据翻折的性质得出A=DOE,B=FOE,进而得出DOF=A

14、+B,利用三角形内角和解答即可详解:将ABC沿DE,EF翻折,A=DOE,B=FOE,DOF=DOE+EOF=A+B=142,C=180AB=180142=38 故选A点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型10、C【解析】分析:首先求出的值,然后根据立方根的计算法则得出答案详解:, 的立方根为2,故选C点睛:本题主要考查的是算术平方根与立方根,属于基础题型理解算术平方根与立方根的含义是解决本题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据任何多边形的外角和都是360度,先利用360

15、40求出多边形的边数,再根据多边形的内角和公式(n-2)180计算即可求解【详解】解:多边形的边数是:36040=9,则内角和是:(9-2)180=1260故答案为1260【点睛】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键12、1【解析】根据平行四边形定义得:DCAB,由两角对应相等可得:NQCMQA,DPCMPA,列比例式可得CN的长【详解】四边形ABCD是平行四边形,DCAB,CNQ=AMQ,NCQ=MAQ,NQCMQA,同理得:DPCMPA,P、Q为对角线AC的三等分点,设CN=x,AM=1x,解得,x=1,CN=1,故答案为1【点睛】本题考查了平行四边形的性质和相

16、似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键13、y【解析】根据幂的乘方和同底数幂相除的法则即可解答.【详解】【点睛】本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.14、2或-1【解析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8是直角边,则该三角形的斜边的长为:,内切圆的半径为:;若8是斜边,则该三角形的另一条直角边的长为:,内切圆的半径为:.故答案为2或-1.【点睛】本题考查了勾股定理,三角

17、形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.15、【解析】证明EAC=ACB,ABC=AFE=90即可;由ADBC,推出AEFCBF,得到,由AE=AD=BC,得到,即CF=2AF;作DMEB交BC于M,交AC于N,证明DM垂直平分CF,即可证明;设AE=a,AB=b,则AD=2a,根据BAEADC,得到,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N,四边形ABCD是矩形,ADBC,ABC=90,AD=BC,BEAC于点F,EAC=ACB,ABC=AFE=90,AEFCAB,故正确;ADBC,AEFCBF,AE=AD=BC,即CF=2AF, CF=2AF

18、,故正确;作DMEB交BC于M,交AC于N,DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,即b=a,tanCAD=,故错误;故答案为:【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键16、【解析】首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)

19、代入一次函数的解析式y=kx+3,从而求出k的值【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=4;当a=4时,把(4,0)代入y=kx+3,得k=;当a=-4时,把(-4,0)代入y=kx+3,得k=;故k的值为或【点睛】考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值17、【解析】利用勾股定理求出AB,再证明OC=OA=OD,推出OCB=ODC,可得tanOCB=tanODC=,由此

20、即可解决问题.【详解】在RtABC中,AC=4,BC=3,ACB=90,AB=5,四边形ABDE是菱形,AB=BD=5,OA=OD,OC=OA=OD,OCB=ODC,tanOCB=tanODC=,故答案为【点睛】本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型三、解答题(共7小题,满分69分)18、(1)x=1 (2) (1)【解析】(1)作AMBC、连接AP,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC= ,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长

21、,根据PA=PH建立关于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=98k,由ABECEH得 ,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQEG、HNBC,先证EPQPHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC= 、cosC= ,据此得出NC= k、HN=k及PN=PCNC=k,继而表示出EF、EH的长,从而出答案【详解】(1)作AMBC于点M,连接AP,如图1,梯形ABCD中,AD/BC,且AB=DC=5、AD=1、BC=9,BM=4、AM=1,ta

22、nB=tanC=,PHDC,设PH=1k,则CH=4k、PC=5k,BC=9,PM=BCBMPC=55k,AP=AM+PM=9+(55k) ,PA=PH,9+(55k) =9k,解得:k=1或k=,当k= 时,CP=5k= 9,舍去;k=1,则圆P的半径为1(2)如图2,由(1)知,PH=PE=1k、CH=4k、PC=5k,BC=9,BE=BCPEPC=98k,ABECEH, ,即 ,解得:k= ,则PH= ,即圆P的半径为,圆B与圆P相交,且BE=98k= ,r;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQEG于G,HNBC于N,则EG=EF、1=1、EQ=QG、EF=EG=2E

23、Q,GEP=21,PE=PH,1=2,4=1+2=21,GEP=4,EPQPHN,EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,sinC= 、cosC= ,NC= k、HN= k,PN=PCNC= k,EF=EG=2EQ=2PN= k,EH= ,故线段EH和EF的比值为定值【点睛】此题考查全等三角形的性质,相似三角形的性质,解直角三角形,勾股定理,解题关键在于作辅助线.19、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定FAECDE,即可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;(2)先判定CDE是等腰直角三

24、角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD详解:(1)四边形ABCD是矩形,ABCD,FAE=CDE,E是AD的中点,AE=DE,又FEA=CED,FAECDE,CD=FA,又CDAF,四边形ACDF是平行四边形;(2)BC=2CD证明:CF平分BCD,DCE=45,CDE=90,CDE是等腰直角三角形,CD=DE,E是AD的中点,AD=2CD,AD=BC,BC=2CD点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过

25、证明四边形是平行四边形达到上述目的20、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为【解析】(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;(2)根据函数的特点得出a=m,-=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标【详解】解:(1)答案不唯一,如;(2)y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,即a=m,-=0,整理得m=a,n=-b,p=c,则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,函数y1+y2的顶点坐标为(0,2c)【

26、点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键21、11【解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论【详解】将x=2代入方程,得:11m+3m=0,解得:m=1当m=1时,原方程为x28x+12=(x2)(x6)=0,解得:x1=2,x2=6,2+2=16,此等腰三角形的三边为6、6、2,此等腰三角形的周长C=6+6+2=11【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质22、 (1)

27、40;(2)144;(3)作图见解析;(4)游戏规则不公平【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题【详解】解:(1)n%=110%15%35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:36040%=144,故答案为144;(3)调查的结果为D等级的人数为:40040%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数) P(偶数)故游戏规则不公

28、平【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、 作abcd,可得交点P与P 【解析】(1)根据勾股定理计算即可;(2)利用平行线等分线段定理即可解决问题.【详解】(I)AC=,故答案为:;(II)如图直线l1,直线l2即为所求;理由:abcd,且a与b,b与c,c与d之间的距离相等,CP=PP=PA,SBCP=SABP=SABC故答案为作abcd,可得交点P与P【点睛】本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是

29、灵活运用所学知识解决问题,属于中考常考题型24、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元【解析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数(2)根据平均数,中位数,众数的意义回答【详解】解:(1)平均数=(31+43+52+61+71+81+101)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元)(2)今年每个销售人员统一的销售标准应是5万元理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成因此把5万元定为标准比较合理【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁