《2023届山东省德州市庆云县中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省德州市庆云县中考猜题数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A3.5B4C7D142如图,在64的正方形网格中,ABC的顶点均为格点,则sinAC
2、B=()AB2CD3下列各数中比1小的数是()A2B1C0D14下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等5一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球两次都摸到红球的概率是( )ABCD67的相反数是( )A7B7CD7如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是( )ABCD8如图,在平面直角坐标系中,OAB的顶点A在x轴正半轴上,OC是OAB的中线,点B、C在反比例函数y=(x0)的图象上,则OAB的面积等于()A2B3C 4D
3、69甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:甲、乙两班学生的平均成绩相同;乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀);甲班成绩的波动比乙班大上述结论中,正确的是()ABCD10如图,在扇形CAB中,CA=4,CAB=120,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()ABC10D11生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题
4、意列出的方程是( )Ax(x+1)=132Bx(x-1)=132Cx(x+1)=132Dx(x-1)=132212如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上已知纸板的两条边DF50cm,EF30cm,测得边DF离地面的高度AC1.5m,CD20m,则树高AB为()A12mB13.5mC15mD16.5m二、填空题:(本大题共6个小题,每小题4分,共24分)13已知一粒米的质量是1111121千克,这个数字用科学记数法表示为_14如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足PBC是等腰三角
5、形的点P有且只有3个,则AB的长为 15如图,在ABC中,BAC=50,AC=2,AB=3,将ABC绕点A逆时针旋转50,得到AB1C1,则阴影部分的面积为_.16如果抛物线y=(m1)x2的开口向上,那么m的取值范围是_17如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去则点B6的坐标_18如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM4米,AB8米,MAD45,MBC30,则警示牌的高CD为米.(结果精确到0.1米,参考数据:1.41
6、,1.73)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.20(6分)抛物线y=x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为
7、点B,且抛物线对称轴与线段OA交于点P(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可)21(6分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,
8、B 两处粮仓的存粮吨数相等(tan260.44,cos260.90,tan260.49)(1)A,B 两处粮仓原有存粮各多少吨?(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由22(8分)如图,已知抛物线yax2+bx+5经过A(5,0),B(4,3)两点,与x轴的另一个交点为C,顶点为D,连结CD求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不
9、重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC的面积的最大值;该抛物线上是否存在点P,使得PBCBCD?若存在,求出所有点P的坐标;若不存在,请说明理由23(8分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元设在同一家复印店一次复印文件的页数为x(x为非负整数)(1)根据题意,填写下表:一次复印页数(页)5102030甲复印店收费(元)0.5 2 乙复印店收费(元)0.6 2.4 (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2
10、元,分别写出y1,y2关于x的函数关系式;(3)当x70时,顾客在哪家复印店复印花费少?请说明理由24(10分)如图,一次函数y=kx+b的图象与二次函数y=x2+c的图象相交于A(1,2),B(2,n)两点(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=x2+c的图象与y轴相交于点C,连接AC,BC,求ABC的面积25(10分)先化简,再求值:,其中满足.26(12分)如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,若 AB,求证:四边形 ABCD 是正方形27(12分)为了预防“甲型H1N1”,某学校
11、对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?参考答案一、
12、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB【详解】菱形ABCD的周长为28,AB=284=7,OB=ODH为AD边中点,OH是ABD的中位线,OHAB7=3.1故选A【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键2、C【解析】如图,由图可知BD=2、CD=1、BC=,根据sinBCA=可得
13、答案【详解】解:如图所示,BD=2、CD=1,BC=,则sinBCA=,故选C【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理3、A【解析】根据两个负数比较大小,绝对值大的负数反而小,可得答案【详解】解:A、21,故A正确;B、11,故B错误;C、01,故C错误;D、11,故D错误;故选:A【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小4、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;
14、D、等腰三角形两底角相等,正确,为真命题;故选D5、A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红(红,红)(红,红)(绿,红)(绿,绿)红(红,红)(红,红)(绿,红)(绿,红)红(红,红)(红,红)(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)所有等可能的情况数为20种,其中两次都为红球的情况有6种,故选A.6、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.7、B【解析
15、】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称从物体的前面向后面投射所得的视图称主视图(正视图)能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图能反映物体的左面形状故选B考点:三视图8、B【解析】作BDx轴于D,CEx轴于E,BDCE,OC是OAB的中线,设CE=x,则BD=2x,C的横坐标为,B的横坐标为,OD=,OE=,DE=OE-OD=,AE=DE=,OA=OE+AE=,SOAB=OABD=1故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的
16、关键.9、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大故正确,故选D点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型10、D【解析】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,推出APDABP,得到BP=2PD,于是得到2PD+PB=BP+PBPP,根据勾股定理得到PP=,求得2PD+PB4,于是得到结论【详解】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=
17、2,=2,APDABP,BP=2PD,2PD+PB=BP+PBPP,PP=,2PD+PB4,2PD+PB的最小值为4,故选D【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键11、B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.12、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB【详解】DEF=BCD=90,D=D,DEFDCB,DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=2
18、0m,由勾股定理求得DE=40cm,BC=15米,AB=AC+BC=1.5+15=16.5(米)故答案为16.5m【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定【详解】解:1.111121=2.111-2故答案为:2.111-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a11-n,其中1|a|11,n由原数左边起第
19、一个不为零的数字前面的1的个数所决定14、1【解析】试题分析:如图,当AB=AD时,满足PBC是等腰三角形的点P有且只有3个,P1BC,P2BC是等腰直角三角形,P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论15、【解析】试题分析:,S阴影=故答案为考点:旋转的性质;扇形面积的计算16、m2【解析】试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m22解:因为抛物线y=(m2)x2的开口向上,所以m22,即m2,故m的取值范围是m2考点:二次函数的性质17、 (-1,0)【解析】根据已知条件由图中可
20、以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1又因为B6在x轴负半轴,所以B6(-1,0)解:如图所示正方形OBB1C,OB1=,B1所在的象限为第一象限;OB2=()2,B2在x轴正半轴;OB3=()3,B3所在的象限为第四象限;OB4=()4,B4在y轴负半轴;OB5=()5,B5所在的象限为第三象限;OB6=()6=1,B6在x轴负半轴B6(-1,0)故答案为(-1,0)18、2.9【解析】试题分析:在RtAMD
21、中,MAD=45,AM=4米,可得MD=4米;在RtBMC中,BM=AM+AB=12米,MBC=30,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)100;(2)见解析;(3)108;(4)1250.【解析】试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据
22、甲班级所占的百分比,再乘以360,即可得出答案;(4)根据样本估计总体,可得答案试题解析:(1)这四个班参与大赛的学生数是:3030%=100(人);故答案为100;(2)丁所占的百分比是:100%=35%,丙所占的百分比是:130%20%35%=15%,则丙班得人数是:10015%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%360=108;(4)根据题意得:2000=1250(人)答:全校的学生中参与这次活动的大约有1250人考点:条形统计图;扇形统计图;样本估计总体.20、(1)y=(x)2+;(,);(2)(,)或(,);(0,);【解析】1)把0(0,0),A(4
23、,4v3)的坐标代入y=x2+bx+c,转化为解方程组即可.(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.(3)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【详解】(1)把O(0,0),A(4,4)的坐标代入y=x2+bx+c,得,解得,抛物线的解析式为y=x2+5x=(x)2+所以抛物线的顶
24、点坐标为(,);(2)由题意B(5,0),A(4,4),直线OA的解析式为y=x,AB=7,抛物线的对称轴x=,P(,)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,QCOB,CQB=QBO=QBC,CQ=BC=OB=5,四边形BOQC是平行四边形,BO=BC,四边形BOQC是菱形,设Q(m,),OQ=OB=5,m2+()2=52,m=,点Q坐标为(,)或(,);如图2中,由题意点D在以B为圆心5为半径的B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点HAB=7,BD=5,AD=2,D(,),OH=HD,H(,),直线BH的解析式为y=x+,当y=时,x=0,
25、Q(0,)【点睛】本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对21、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地【解析】(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;(3)由题意可知由已知可得ABC中A=26ACB=90且AB=1Km,sinBAC=,要求BC的长,可
26、以运用三角函数解直角三角形【详解】(1)设A,B两处粮仓原有存粮x,y吨根据题意得: 解得:x=270,y=1答:A,B两处粮仓原有存粮分别是270,1吨(2)A粮仓支援C粮仓的粮食是270=162(吨),B粮仓支援C粮仓的粮食是1=72(吨),A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨)234200,此次调拨能满足C粮仓需求(3)如图,根据题意知:A=26,AB=1千米,ACB=90在RtABC中,sinBAC=,BC=ABsinBAC=10.44=79.2此车最多可行驶435=140(千米)279.2,小王途中须加油才能安全回到B地【点睛】求三角形的边或高的问题一般可以转化
27、为解直角三角形的问题,解决的方法就是作高线22、 (1)yx2+6x+5;(2)SPBC的最大值为;存在,点P的坐标为P(,)或(0,5)【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,求出 直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2
28、x+2,、联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立和yx2+6x+5并解得:x,即可求出P点;当点P(P)在直线BC上方时,根据PBCBCD求出BPCD,求出直线BP的表达式为:y2x+5,联立yx2+6x+5和y2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:yx2+6x+5,令y0,则x1或5,即点C(1,0);(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),SPBC
29、PG(xCxB)(t+1t26t5)t2t6,-0,SPBC有最大值,当t时,其最大值为;设直线BP与CD交于点H,当点P在直线BC下方时,PBCBCD,点H在BC的中垂线上,线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,设BC中垂线的表达式为:yx+m,将点(,)代入上式并解得:直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立并解得:x或4(舍去4),故点P(,);当点P(P)在直线BC上方时,PBCBCD,BPCD,则直线BP的表达式为:y2x+s,将点B坐标代入上式并解得:s
30、5,即直线BP的表达式为:y2x+5,联立并解得:x0或4(舍去4),故点P(0,5);故点P的坐标为P(,)或(0,5)【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.23、(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.【解析】(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;(3)设y=y1-y2,得到y与x的函数关系,根据y与x的函数关系式即可作
31、出判断【详解】解:(1)当x=10时,甲复印店收费为:0,110=1;乙复印店收费为:0.1210=1.2;当x=30时,甲复印店收费为:0,130=3;乙复印店收费为:0.1220+0.0910=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x0);y2=;(3)顾客在乙复印店复印花费少;当x70时,y1=0.1x,y2=0.09x+0.6,设y=y1y2,y1y2=0.1x(0.09x+0.6)=0.01x0.6,设y=0.01x0.6,由0.010,则y随x的增大而增大,当x=70时,y=0.1x70时,y0.1,y1y2,当x70时,顾客在乙复印店复印花费少【点睛】本题
32、考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键24、(1)y=x+1;(2)1x2;(3)3;【解析】(1)根据待定系数法求一次函数和二次函数的解析式即可.(2)根据图象以及点A,B两点的坐标即可求出使二次函数的值大于一次函数的值的x的取值范围;(3)连接AC、BC,设直线AB交y轴于点D,根据即可求出ABC的面积.【详解】(1)把A(1,2)代入y=x2+c得:1+c=2,解得:c=3,y=x2+3,把B(2,n)代入y=x2+3得:n=1,B(2,1),把A(1,2)、B(2,1)分别代入y=kx+b得 解得: y=x+1;(2)根据图象得:使二次函数的值大于一次函数的值的
33、x的取值范围是1x2;(3)连接AC、BC,设直线AB交y轴于点D,把x=0代入y=x2+3得:y=3,C(0,3),把x=0代入y=x+1得:y=1,D(0,1),CD=31=2,则【点睛】考查待定系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键.25、1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值试题解析:原式= x2x1=0,x2=x+1,则原式=1.26、详见解析.【解析】四边形ABCD是正方形,利用已知条件先证明四边形A
34、BCD是平行四边形,再证明四边形ABCD是矩形,再根据对角线垂直的矩形是正方形即可证明四边形ABCD是正方形【详解】证明:在四边形ABCD中,OA=OC,OB=OD,四边形ABCD是平行四边形,OA=OB=OC=OD,又AC=AO+OC,BD=OB+DO,AC=BD,平行四边形是矩形,在AOB中,AOB是直角三角形,即ACBD,矩形ABCD是正方形.【点睛】本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强27、(1);(2)至少需要30分钟后生才能进入教室(3)这次消毒是有效的【解析】(1)药物燃烧时,设出y与x之间的解析式y=k
35、1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于10就有效【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k10)代入(8,6)为6=8k1k1= 设药物燃烧后y关于x的函数关系式为y=(k20)代入(8,6)为6=,k2=48药物燃烧时y关于x的函数关系式为(0x8)药物燃烧后y关于x的函数关系式为(x8) (2)结合实际,令中y1.6得x30即从消毒开始,至少需要30分钟后生才能进入教室 (3)把y=3代入,得:x=4把y=3代入,得:x=16164=12所以这次消毒是有效的【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式