《2023届内蒙古巴彦淖尔市乌拉特前旗重点中学中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届内蒙古巴彦淖尔市乌拉特前旗重点中学中考四模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )ABCD2已知二次函数yx24x+m的图象与x轴
2、交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A1B2C3D43如图,立体图形的俯视图是ABCD4射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,则四人中成绩最稳定的是( )A甲B乙C丙D丁5对于一组统计数据1,1,6,5,1下列说法错误的是()A众数是1B平均数是4C方差是1.6D中位数是66在1、1、3、2这四个数中,最大的数是()A1B1C3D27如图,已知OP平分AOB,AOB60,CP2,CPOA,PDOA于点D,PEOB于点E如果点M是OP的中点,则DM的长是()A2BCD28下列方程中是一元二次方程的是()ABCD9下面四个几何体
3、中,左视图是四边形的几何体共有()A1个B2个C3个D4个10在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah例如:三点坐标分别为A(1,2),B(3,1),C(2,2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1若D(1,2)、E(2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A3或7 B4或6 C4或7 D3或611如图,在RtABC中,ACB=90,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交
4、于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则ACD的周长为()A13B17C18D2512PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A0.25105B0.25106C2.5105D2.5106二、填空题:(本大题共6个小题,每小题4分,共24分)13两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于_14已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_15如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若A=60,AB=
5、4,则四边形BCNM的面积为_16小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由_.月份六月七月八月用电量(千瓦时)290340360月平均用电量(千瓦时)33017甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:_18如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程
6、或演算步骤19(6分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45,在楼顶C测得塔顶A的仰角3652已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE(参考数据:sin36520.60,tan36520.75)20(6分)如图,在RtABC中,ABAC,D、E是斜边BC上的两点,EAD45,将ADC绕点A顺时针旋转90,得到AFB,连接EF求证:EFED;若AB2,CD1,求FE的长21(6分)已知:如图,在梯形ABCD中,DCAB,ADBC,BD平分ABC,A60求:(1)求CDB的度数;(2)当AD2时,求对角线BD的长和梯形ABC
7、D的面积22(8分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)点E在抛物线的对称轴上,且,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,求点Q的坐标. 23(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”例如图1,图2,图1中,AF,BE是ABC的中线,AFBE,垂足为P,像ABC这样的三角形均为“中垂三角形”设BCa,ACb,ABc特例探索(1)如图1,当ABE45,c时,a ,b ;如图2,当ABE10,c4时,a ,b ;归纳证明(2)请你观察(1)中
8、的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在ABCD中,点E,F,G分别是AD,BC,CD的中点,BEEG,AD,AB1求AF的长24(10分)如图,ABC中,C=90,A=30用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);连接BD,求证:BD平分CBA25(10分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一
9、对变量,根据学习函数的经验,对它们之间的关系进行了探究下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在RtABC中,C=90,AC=BC=6cm,D是线段AB上一动点,射线DEBC于点E,EDF=60,射线DF与射线AC交于点F设B,E两点间的距离为xcm,E,F两点间的距离为ycm(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.34.03.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题
10、:当DEF为等边三角形时,BE的长度约为 cm26(12分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示 分组频数4.0x4.224.2x4.434.4x4.654.6x4.884.8x5.0175.0x5.25(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果27(12分)已知,平面直角坐标系中的点A(a,1),taba2b2(a,b是
11、实数)(1)若关于x的反比例函数y过点A,求t的取值范围(2)若关于x的一次函数ybx过点A,求t的取值范围(3)若关于x的二次函数yx2+bx+b2过点A,求t的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图详解:该几何体的左视图是:故选A点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力2、B【解析】先将点A(1,0)代入yx24x+m,求出m的值,将点A(1,0)代入yx24x+m,得到x1
12、+x24,x1x23,即可解答【详解】将点A(1,0)代入yx24x+m,得到m3,所以yx24x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)x24x+30有两个不等的实数根,x1+x24,x1x23,AB|x1x2| 2;故选B【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.3、C【解析】试题分析:立体图形的俯视图是C故选C考点:简单组合体的三视图4、D【解析】根据方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案【详解】0.450.510.62,丁成绩最稳定,故选D【点睛】
13、此题主要考查了方差,关键是掌握方差越小,稳定性越大5、D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2= (14)2+(14)2+(64)2+(54)2+(14)2=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D考点:1.众数;2.平均数;1.方差;4.中位数.6、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此
14、判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数是1故选C【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小7、C【解析】由OP平分AOB,AOB=60,CP=2,CPOA,易得OCP是等腰三角形,COP=30,又由含30角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长【详解】解:OP平分AOB,AOB=60,AOP=COP=30,CPOA,AOP=CPO,COP=
15、CPO,OC=CP=2,PCE=AOB=60,PEOB,CPE=30,CE=CP=1,PE=,OP=2PE=2,PDOA,点M是OP的中点,DM=OP=故选C考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理8、C【解析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、是分式方程,故本选项错误;C、化简得:是一元二次方程,故本选项正确;D、是二元二次方程,故本选项错误;故选:C【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键9、B【解析】简单几何体
16、的三视图【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个故选B10、C【解析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 2或t1两种情况进行求解即可.【详解】解:由题可知a=3,则h=183=6,则可知t2或t1.当t2时,t-1=6,解得t=7;当t1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.11、C【解析】在RtABC中,ACB=90,BC=12,AC=5
17、,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在RtABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.12、D【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而故选
18、D二、填空题:(本大题共6个小题,每小题4分,共24分)13、4或1【解析】两圆内切,一个圆的半径是6,圆心距是2,另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1【点睛】本题考查了根据两圆位置关系来求圆的半径的方法注意圆的半径是6,要分大圆和小圆两种情况讨论14、1【解析】试题解析:如图,菱形ABCD中,BD=8,AB=5,ACBD,OB=BD=4,OA=3,AC=2OA=6,这个菱形的面积为:ACBD=68=115、3【解析】如图,连接BD首先证明BCD是等边三角形,推出SEBC=SDBC=42=4,再证明EMNEBC,可得=()2=,推出SEMN=,由此即可解决问
19、题.【详解】解:如图,连接BD四边形ABCD是菱形,AB=BC=CD=AD=4,A=BCD=60,ADBC,BCD是等边三角形,SEBC=SDBC=42=4,EM=MB,EN=NC,MNBC,MN=BC,EMNEBC,=()2=,SEMN=,S阴=4-=3,故答案为3【点睛】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型16、不合理,样本数据不具有代表性【解析】根据表中所取的样本不具有代表性即可得到结论【详解】不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量)故答案为:不合理,样本数据不具有代表
20、性(例:夏季高峰用电量大不能代表年平均用电量)【点睛】本题考查了统计表,认真分析表中数据是解题的关键17、【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.18、15【解析】根据平行四边形的性质和圆的半径相等得到AOB为等边三角形,根据等腰三角形的三线合一得到BOFAOF30,根据圆周角定理计算即可【详解】解答:连接OB,四边形ABCO是平行四边形,OC=A
21、B,又OA=OB=OC,OA=OB=AB,AOB为等边三角形.OFOC,OCAB,OFAB,BOF=AOF=30.由圆周角定理得 ,故答案为15.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、52【解析】根据楼高和山高可求出EF,继而得出AF,在RtAFC中表示出CF,在RtABD中表示出BD,根据CF=BD可建立方程,解出即可【详解】如图,过点C作CFAB于点F. 设塔高AE=x,由题意得,EF=BECD=5627=29m,AF=AE+EF=(x+29)m,在RtAFC中,ACF=3652,AF=(x+29)m,则,在RtABD中,ADB=45,AB=
22、x+56,则BD=AB=x+56,CF=BD,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.20、(1)见解析;(2)EF.【解析】(1)由旋转的性质可求FAEDAE45,即可证AEFAED,可得EFED;(2)由旋转的性质可证FBE90,利用勾股定理和方程的思想可求EF的长【详解】(1)BAC90,EAD45,BAE+DAC45,将ADC绕点A顺时针旋转90,得到AFB,BAFDAC,AFAD,CDBF,ABFACD45,BAF+BAE45FAE,FAEDAE,ADAF,AEAE,AEFAED
23、(SAS),DEEF(2)ABAC2,BAC90,BC4,CD1,BF1,BD3,即BE+DE3,ABFABC45,EBF90,BF2+BE2EF2,1+(3EF)2EF2,EF【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键21、:(1) 30;(2)【解析】分析:(1)由已知条件易得ABC=A=60,结合BD平分ABC和CDAB即可求得CDB=30;(2)过点D作DHAB于点H,则AHD=30,由(1)可知BDA=DBC=30,结合A=60可得ADB=90,ADH=30,DC=BC=AD=2,由此可得AB=2AD
24、=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.详解: (1) 在梯形ABCD中,DCAB,ADBC,A60,CBA=A=60,BD平分ABC,CDB=ABD=CBA=30, (2)在ACD中,ADB=180AABD=90 BD=AD A=2tan60=2.过点D作DHAB,垂足为H,AH=ADA=2sin60=.CDB=CBD=CBD=30,DC=BC=AD=2AB=2AD=4点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.22、(1),顶点P的坐标为;(2)E点坐标为;(3)
25、Q点的坐标为.【解析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.【详解】解:(1)抛物线解析式为,即,顶点P的坐标为;(2)抛物线的对称轴为直线,设,解得,E点坐标为;(3)直线交x轴于F,作MN直线x=2于H,如图,而,设,则,在中,整理得,解得(舍去),Q点的坐标为.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利
26、用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.23、(1)2,2;2,2;(2)+=5;(1)AF=2【解析】试题分析:(1)AFBE,ABE=25,AP=BP=AB=2,AF,BE是ABC的中线,EFAB,EF=AB=,PFE=PEF=25,PE=PF=1,在RtFPB和RtPEA中,AE=BF=,AC=BC=2,a=b=2,如图2,连接EF,同理可得:EF=2=2,EFAB,PEFABP,在RtABP中,AB=2,ABP=10,AP=2,PB=2,PF=1,PE=,在RtAPE和RtBPF中,AE=,BF=,a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b
27、2=5c2,如图1,连接EF,设ABP=,AP=csin,PB=ccos,由(1)同理可得,PF=PA=,PE=,AE2=AP2+PE2=c2sin2+,BF2=PB2+PF2=+c2cos2,=c2sin2+,=+c2cos2,+=+c2cos2+c2sin2+,a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,点E、G分别是AD,CD的中点,EGAC,BEEG,BEAC,四边形ABCD是平行四边形,ADBC,AD=BC=2,EAH=FCH,E,F分别是AD,BC的中点,AE=AD,BF=BC,AE=BF=CF=AD=,AEBF,四边形ABF
28、E是平行四边形,EF=AB=1,AP=PF,在AEH和CFH中,AEHCFH,EH=FH,EQ,AH分别是AFE的中线,由(2)的结论得:AF2+EF2=5AE2,AF2=5EF2=16,AF=2考点:相似形综合题24、(1)作图见解析;(2)证明见解析【解析】(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出ABD=A=30,然后求出CBD=30,从而得到BD平分CBA【详解】(1)解:如图所示,DE就是要求作的
29、AB边上的中垂线;(2)证明:DE是AB边上的中垂线,A=30,AD=BD,ABD=A=30,C=90,ABC=90A=9030=60,CBD=ABCABD=6030=30,ABD=CBD,BD平分CBA【点睛】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.25、(1)见解析;(1)3.5;(3)见解析; (4)3.1【解析】根据题意作图测量即可【详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当DEF为等边三角形是,EF=DE,由B=45,射线DEBC于点E,则BE=EF即y=x所以,当(1)中图象与直线y=x相交
30、时,交点横坐标即为BE的长,由作图、测量可知x约为3.1【点睛】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究26、(1)所抽取的学生人数为40人(2)37.5%(3)视力x4.4之间活动前有9人,活动后只有5人,人数明显减少活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【解析】【分析】(1)求出频数之和即可;(2)根据合格率=合格人数总人数100%即可得解;(3)从两个不同的角度分析即可,答案不唯一.【详解】(1)频数之和=3+6+7+9+10+5=40,所抽取的学生人数为40人;(2)活动前该校学生的视力达标率=100%=3
31、7.5%;(3)视力x4.4之间活动前有9人,活动后只有5人,人数明显减少;活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.27、(1)t;(2)t3;(3)t1【解析】(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围(2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围【详解】解:(1)把A(a,1)代入y得到:1,解得a1,则taba2b2b1b2(b)2因为抛物线t(b)2的开口方向向下,且顶点坐标是(,),所以t的取值范围为:t;(2)把A(a,1)代入ybx得到:1ab,所以a,则taba2b2(a2+b2)+1(b+)2+33,故t的取值范围为:t3;(3)把A(a,1)代入yx2+bx+b2得到:1a2+ab+b2,所以ab1(a2+b2),则taba2b212(a2+b2)1,故t的取值范围为:t1【点睛】本题考查了反比例函数、一次函数以及二次函数的性质代入求值时,注意配方法的应用