《2023届安徽省阜阳市太和县中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省阜阳市太和县中考三模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则BFC为()A75B60C55D452如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D3剪纸是我国传统的民间艺术下列剪纸
2、作品既不是中心对称图形,也不是轴对称图形的是( )ABCD4我省2013年的快递业务量为12亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一若2015年的快递业务量达到25亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是( )A12(1x)25B12(12x)25C12(1x)225D12(1x)12(1x)2255如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知BDC=62,则DFE的度数为()A31B28C62D566已知方程x2x2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的
3、值为()A3B1C3D17如图,在O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:ABCD; AOB=4ACD;弧AD=弧BD;PO=PD,其中正确的个数是()A4B1C2D38下列运算结果正确的是()Ax2+2x23x4B(2x2)38x6Cx2(x3)x5D2x2x2x9如图,四边形ABCD是菱形,A=60,AB=2,扇形BEF的半径为2,圆心角为60,则图中阴影部分的面积是( )ABCD10如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11观察下列的
4、“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_(用含n的代数式表示)12关于的一元二次方程有两个相等的实数根,则_13一个n边形的内角和为1080,则n=_.14某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_(请写出盈利或亏损)_元15如图,在四边形中,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动若,当_时,是等腰三角形16计算:a3(a)2=_三、解答题(共8题,共72分)17(8分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、
5、D分别是边OA、AB的中点将ACD绕点A顺时针方向旋转,得ACD,记旋转角为(I)如图,连接BD,当BDOA时,求点D的坐标;(II)如图,当60时,求点C的坐标;(III)当点B,D,C共线时,求点C的坐标(直接写出结果即可)18(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EFAM,垂足为F,交AD的延长线于点E,交DC于点N求证:ABMEFA;若AB=12,BM=5,求DE的长19(8分)现有A、B两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A301200.20B603200.25设上网时间为x分钟,(1)若按方式A和
6、方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?20(8分)如图,已知AB是圆O的直径,F是圆O上一点,BAF的平分线交O于点E,交O的切线BC于点C,过点E作EDAF,交AF的延长线于点D求证:DE是O的切线;若DE3,CE2. 求的值;若点G为AE上一点,求OG+EG最小值21(8分)如图,已知,求证 22(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF已知BC=1(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上
7、取不同的位置,PFM的形状是否发生变化?请说明理由;求PFM的周长的取值范围23(12分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车已知小张家距上班地点10千米他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍小张用骑公共自行车方式上班平均每小时行驶多少千米?24如图,ABCD,E、F分别为AB、CD上的点,且ECBF,连接AD,分别与EC、BF相交与点G、H,若ABCD,求证:AGDH参考答案一、选择题(共10小题,每小题3分,共
8、30分)1、B【解析】由正方形的性质和等边三角形的性质得出BAE150,ABAE,由等腰三角形的性质和内角和定理得出ABEAEB15,再运用三角形的外角性质即可得出结果【详解】解:四边形ABCD是正方形,BAD90,ABAD,BAF45,ADE是等边三角形,DAE60,ADAE,BAE90+60150,ABAE,ABEAEB(180150)15,BFCBAF+ABE45+1560;故选:B【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键2、D【解析】根据同弧或等弧所对的圆周角相等可知B
9、ED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DAB=DEB,tanDEB= tanDAB=,故选D【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键3、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误故选A考点:中心对称图形;轴对称图形4、C【解析】试题解析:设2015年与2016年这两年的平均增长率为x
10、,由题意得:1.2(1+x)2=2.5,故选C5、D【解析】先利用互余计算出FDB=28,再根据平行线的性质得CBD=FDB=28,接着根据折叠的性质得FBD=CBD=28,然后利用三角形外角性质计算DFE的度数【详解】解:四边形ABCD为矩形,ADBC,ADC=90,FDB=90-BDC=90-62=28,ADBC,CBD=FDB=28,矩形ABCD沿对角线BD折叠,FBD=CBD=28,DFE=FBD+FDB=28+28=56故选D【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等6、D【解析】分析:根据一元二次方程根与系数的关系求出x
11、1x2和x1x2的值,然后代入x1x2x1x2计算即可.详解:由题意得,a=1,b=-1,c=-2,x1x2x1x2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .7、D【解析】根据垂径定理,圆周角的性质定理即可作出判断【详解】P是弦AB的中点,CD是过点P的直径ABCD,弧AD=弧BD,故正确,正确;AOB=2AOD=4ACD,故正确P是OD上的任意一点,因而不一定正确故正确的是:故选:D【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键平分弦(不是直径)的直径垂直
12、与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.8、C【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(2x2)3=8x6,故此选项错误;C选项:x2(x3)=x5,故此选项正确;D选项:2x2x2=2,故此选项错误故选C【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键9、B【解析】根据菱形的性质得出DAB是等边三角形,进而利用全等三角形的判定得出ABGDBH,得出四边形GBHD的面积等于ABD的面积,进而求出即可【详解】连
13、接BD,四边形ABCD是菱形,A=60,ADC=120,1=2=60,DAB是等边三角形,AB=2,ABD的高为,扇形BEF的半径为2,圆心角为60,4+5=60,3+5=60,3=4,设AD、BE相交于点G,设BF、DC相交于点H,在ABG和DBH中,ABGDBH(ASA),四边形GBHD的面积等于ABD的面积,图中阴影部分的面积是:S扇形EBF-SABD=故选B10、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=
14、45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积二、填空题(本大题共6个小题,每小题3分,共18分)11、3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律【详解】解:由题意可知:每1个都比前一个多出了3个“”,第n个图案中共有“”为:4+3(n1)3n+1故答案为:3n+1.【点睛】本题考查学生
15、的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型12、-1.【解析】根据根的判别式计算即可.【详解】解:依题意得:关于的一元二次方程有两个相等的实数根,= =4-41(-k)=4+4k=0解得,k=-1.故答案为:-1.【点睛】本题考查了一元二次方程根的判别式,当=0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当=0时,方程无实数根.13、1【解析】直接根据内角和公式计算即可求解.【详解】(n2)110=1010,解得n=1故答案为1【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.14、亏损 1 【解析】设盈利20%的电子琴的成本为x元,设亏本20
16、%的电子琴的成本为y元,再根据(1+利润率)成本=售价列出方程,解方程计算出x、y的值,进而可得答案【详解】设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=10;设亏本20%的电子琴的成本为y元,y(1-20%)=960,解得y=1200;9602-(10+1200)=-1,亏损1元,故答案是:亏损;1【点睛】考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程15、或【解析】根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;当时
17、,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t【详解】解:由运动知,是等腰三角形,且,当时,过点P作PEAD于点E点在的垂直平分线上, QE=,AE=BP,当时,如图,过点作于,四边形是矩形,在中,点在边上,不和重合,此种情况符合题意,即或时,是等腰三角形故答案为:或【点睛】此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键16、a【解析】利用整式的除法运算即可得出答案.【详解】原式,.【点睛】本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.三、解答题(共8题,共72分)17、(I)(10,4)或(6,4)(II)C(6,2
18、)(III)C(8,4)C(,)【解析】(I)如图,当OBAC,四边形OBCA是平行四边形,只要证明B、C、D共线即可解决问题,再根据对称性确定D的坐标;(II)如图,当=60时,作CKAC于K解直角三角形求出OK,CK即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图,A(8,0),B(0,4),OB=4,OA=8,AC=OC=AC=4,当OBAC,四边形OBCA是平行四边形,AOB=90,四边形OBCA是矩形,ACB=90,ACD=90,B、C、D共线,BDOA,AC=CO, BD=AD,CD=CD=OB=2,D(10,4),根据对称性可知,点D在线段BC上时,
19、D(6,4)也满足条件综上所述,满足条件的点D坐标(10,4)或(6,4)(II)如图,当=60时,作CKAC于K在RtACK中,KAC=60,AC=4,AK=2,CK=2,OK=6,C(6,2)(III)如图中,当B、C、D共线时,由()可知,C(8,4)如图中,当B、C、D共线时,BD交OA于F,易证BOFACF,OF=FC,设OF=FC=x,在RtABC中,BC=8,在RTBOF中,OB=4,OF=x,BF=8x,(8x)2=42+x2,解得x=3,OF=FC=3,BF=5,作CKOA于K,OBKC,=,=,KC=,KF=,OK=,C(,)【点睛】本题考查三角形综合题、旋转变换、矩形的判
20、定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题18、(1)见解析;(2)4.1【解析】试题分析:(1)由正方形的性质得出AB=AD,B=10,ADBC,得出AMB=EAF,再由B=AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由ABMEFA得出比例式,求出AE,即可得出DE的长试题解析:(1)四边形ABCD是正方形,AB=AD,B=10,ADBC,AMB=EAF,又EFAM,AFE=10,B=AFE,ABMEFA;(2)B=10,AB=12,BM=5,AM=13,AD=12,F是AM的中点,AF=AM=6.
21、5,ABMEFA,即,AE=16.1,DE=AE-AD=4.1考点:1.相似三角形的判定与性质;2.正方形的性质19、(1)x=270或x=520;(2)当320x520时,选择方式B更省钱;当x=520时,两种方式花钱一样多;当x520时选择方式A更省钱.【解析】(1)根据收取费用=月使用费+超时单价超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.(2)列不等式,求解即可得出结论【详解】(1)当时,与x之间的函数关系式为: 当时,与x之间的函数关系式为: 即当时,与x之间的函数关系式为: 当时, 与x之间的函数关系式为: 即方式A
22、和方式B的收费金额相等,当时,当时, 解得: 当时, 解得: 即x=270或x=520时,方式A和方式B的收费金额相等. (2) 若上网时间x超过320分钟,解得320x520,当320x520时,选择方式B更省钱;解得x=520,当x=520时,两种方式花钱一样多;解得x520,当x520时选择方式A更省钱.【点睛】考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.20、(1)证明见解析(2) 3【解析】(1)作辅助线,连接OE根据切线的判定定理,只需证DEOE即可;(2)连接BE根据BC、DE两切线的性质证明ADEBEC;又由角平分线的性质、等腰三角形的两个底角相等求
23、得ABEAFD,所以;连接OF,交AD于H,由得FOE=FOA=60,连接EF,则AOF、EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GMOE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.【详解】(1)连接OEOA=OE,AEO=EAOFAE=EAO,FAE=AEOOEAFDEAF,OEDEDE是O的切线(2)解:连接BE直径AB AEB=90圆O与BC相切ABC=90EAB+EBA=EBA+CBE=90EAB=CBEDAE=CBEADE=BEC
24、=90ADEBEC 连接OF,交AE于G,由,设BC=2x,则AE=3xBECABC 解得:x1=2,(不合题意,舍去)AE=3x=6,BC=2x=4,AC=AE+CE=8AB=,BAC=30AEO=EAO=EAF=30,FOE=2FAE=60FOE=FOA=60,连接EF,则AOF、EOF都是等边三角形,四边形AOEF是菱形由对称性可知GO=GF,过点G作GMOE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质比
25、较复杂,解答此题的关键是作出辅助线,利用数形结合解答21、见解析【解析】根据ABD=DCA,ACB=DBC,求证ABC=DCB,然后利用AAS可证明ABCDCB,即可证明结论【详解】证明:ABD=DCA,DBC=ACBABD+DBC=DCA+ACB即ABC=DCB在ABC和DCB中 ABCDCB(ASA)AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证ABCDCB难度不大,属于基础题22、(1)CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由见解析;PFM的周长满足:2+2(1+)y1+1【解析】(1)由折叠的性质可知,FB=FM,设C
26、F=x,则FB=FM=1x,在RtCFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)PFM的形状是等腰直角三角形,想办法证明POFMOC,可得PFO=MCO=15,延长即可解决问题;设FM=y,由勾股定理可知:PF=PM=y,可得PFM的周长=(1+)y,由2y1,可得结论【详解】(1)M为AC的中点,CM=AC=BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,FM2=CF2+CM2,即(1x)2=x2+22,解得,x=,即CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,PMF=B=15,CD是中垂线
27、,ACD=DCF=15,MPC=OPM,POMPMC,=,=,EMC=AEM+A=CMF+EMF,AEM=CMF,DPE+AEM=90,CMF+MFC=90,DPE=MPC,DPE=MFC,MPC=MFC,PCM=OCF=15,MPCOFC, ,POF=MOC,POFMOC,PFO=MCO=15,PFM是等腰直角三角形;PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=y,PFM的周长=(1+)y,2y1,PFM的周长满足:2+2(1+)y1+1【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角
28、形解决问题,学会利用参数解决问题,属于中考常考题型23、15千米【解析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间4,根据等量关系,列出方程,再解即可【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4解得:x=15,经检验x=15是原方程的解且符合实际意义答:小张用骑公共自行车方式上班平均每小时行驶15千米24、证明见解析.【解析】【分析】利用AAS先证明ABHDCG,根据全等三角形的性质可得AH=DG,再根据AHAGGH,DGDHGH即可证得AGHD.【详解】ABCD,AD,CEBF,AHBDGC,在ABH和DCG中,ABHDCG(AAS),AHDG,AHAGGH,DGDHGH,AGHD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.