《2023届吉林省汪清县达标名校中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届吉林省汪清县达标名校中考适应性考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在RtABC中,C=90,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A1B2C3D42分式的值为0,则x的取值为( )Ax=-3Bx=3Cx=-3或x=1Dx=3或x=-13如图,正六边形ABCDEF内接于O,半径为4,则这个正六边形的边心距OM和 的长分别为()A2,B2 ,C,D2,4如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),ABO30,将ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A(,)B(2,)C(,)
3、D(,3)5实数a、b、c在数轴上的位置如图所示,则代数式|ca|a+b|的值等于()Ac+bBbcCc2a+bDc2ab6已知抛物线c:y=x2+2x3,将抛物线c平移得到抛物线c,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A将抛物线c沿x轴向右平移个单位得到抛物线cB将抛物线c沿x轴向右平移4个单位得到抛物线cC将抛物线c沿x轴向右平移个单位得到抛物线cD将抛物线c沿x轴向右平移6个单位得到抛物线c7如图,直线mn,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(4,2),点B的坐标为(2,4),则坐标原点为( )AO1BO2CO3DO48如图,弹性小球从点P(0,1
4、)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)9等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )A9 cm B12 cm C9 cm或12 cm D14 cm10下列图形中,是轴对称图形的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交A
5、D边于点F,连结DM若BAD=120,AE=2,则DM=_12如果反比例函数的图象经过点A(2,y1)与B(3,y2),那么的值等于_.13已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为_cm(结果保留)14因式分解:2b2a2a3bab3=_15如图,ABC中,AB=AC,D是AB上的一点,且AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBCF的面积为_16如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BCAB,ABCD,AB=4,BD=2,tanBAC=3,则线段BC的长是_17如图
6、,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足SPAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为_三、解答题(共7小题,满分69分)18(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形19(5分)(1)解不等式组:;(2)解方程:.20(8分)甲班有45人,乙班有39人现在需要从甲、乙班各抽调一些同学去参加歌咏比赛如果从
7、甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍请问从甲、乙两班各抽调了多少参加歌咏比赛?21(10分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.(1)A,B两种型号的自行车的单价分别是多少?(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.22(10分)如图,点A的坐标为(4,0),点B的坐标为(0,2),把点A绕点B顺时针旋转90得到的点C恰好在抛物线y=ax2上,点
8、P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得QPO=OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标23(12分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PFy轴交抛物线于点F,连结DF设点P的横坐标为m(1)求此抛物线
9、所对应的函数表达式(2)求PF的长度,用含m的代数式表示(3)当四边形PEDF为平行四边形时,求m的值24(14分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生
10、的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得B=CAD=DAB=30,DE垂直平分AB,DA=DB,B=DAB,AD平分CAB,CAD=DAB, C=90,3CAD=90,CAD=30, AD平分CAB,DEAB,CDAC, CD=DE=BD, BC=3, CD=DE=1考点:线段垂直平分线的性质2、A【解析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2两个条件需同时具备,缺一不可据此可以解答本题【详解】原式的值为2,(x-2)(x+3)=2,即x=2或x=-3;又|x|-22,即x2x=-
11、3故选:A【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件3、D【解析】试题分析:连接OB,OB=4,BM=2,OM=2,故选D考点:1正多边形和圆;2.弧长的计算4、A【解析】解:四边形AOBC是矩形,ABO=10,点B的坐标为(0,),AC=OB=,CAB=10,BC=ACtan10=1将ABC沿AB所在直线对折后,点C落在点D处,BAD=10,AD=过点D作DMx轴于点M,CAB=BAD=10,DAM=10,DM=AD=,AM=cos10=,MO=1=,点D的坐标为(,)故选A5、A【解析】根据数轴得到ba0c,根据有理数的加法法则,减法法则得到c-a0
12、,a+b0,根据绝对值的性质化简计算【详解】由数轴可知,ba0c,c-a0,a+b0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键6、B【解析】抛物线C:y=x2+2x3=(x+1)24,抛物线对称轴为x=1抛物线与y轴的交点为A(0,3)则与A点以对称轴对称的点是B(2,3)若将抛物线C平移到C,并且C,C关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称则B点平移后坐标应为(4,3),因此将抛物线C向右平移4个单位故选B7、A【解析】试题分析:因为A点坐标为(4,2
13、),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,4),所以,原点在点B的左边,且在点B的上边4个单位处如下图,O1符合考点:平面直角坐标系8、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.9、B【解析】当腰长是2 cm时,因为2+22,符合三角形三边关系,此时周长是12 cm故选B10、B【解析】分析:根据轴对称图形的概念求解详解:A、不是轴对称图形,故此
14、选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形二、填空题(共7小题,每小题3分,满分21分)11、【解析】作辅助线,构建直角DMN,先根据菱形的性质得:DAC=60,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长【详解】解:过M作MNAD于N,四边形ABCD是菱形, EFAC,AE=AF=2,AFM=30,AM=1,RtAMN中,AMN=30, AD=A
15、B=2AE=4, 由勾股定理得: 故答案为【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30所对的直角边是斜边的一半12、【解析】分析:由已知条件易得2y1=k,3y2=k,由此可得2y1=3y2,变形即可求得的值.详解:反比例函数的图象经过点A(2,y1)与B(3,y2),2y1=k,3y2=k,2y1=3y2,.故答案为:.点睛:明白:若点A和点B在同一个反比例函数的图象上,则是解决本题的关键.13、【解析】考点:弧长的计算;正多边形和圆分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式解:方法一:先求出正六边形的每一个
16、内角=120,所得到的三条弧的长度之和=3=2cm;方法二:先求出正六边形的每一个外角为60,得正六边形的每一个内角120,每条弧的度数为120,三条弧可拼成一整圆,其三条弧的长度之和为2cm14、ab(ab)2【解析】首先确定公因式为ab,然后提取公因式整理即可【详解】2b2a2a3bab3=ab(2ab-a2-b2)=ab(ab)2,所以答案为ab(ab)2.【点睛】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.15、2【解析】解:如图,过D点作DGAC,垂足为G,过A点作AHBC,垂足为H,AB=AC,点E为BD的中点,且AD=AB,设BE=DE=x,则AD=AF=1
17、xDGAC,EFAC,DGEF,即,解得DFBC,ADFABC,即,解得DF=1又DFBC,DFG=C,RtDFGRtACH,即,解得在RtABH中,由勾股定理,得又ADFABC,故答案为:216、6【解析】作DEAB,交BA的延长线于E,作CFAB,可得DE=CF,且AC=AD,可证RtADERtAFC,可得AE=AF,DAE=BAC,根据tanBAC=DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值再根据勾股定理求BC的长【详解】如图:作DEAB,交BA的延长线于E,作CFAB,ABCD,DEAB,CFABCF=DE,且AC=ADRtADERtAFCAE=
18、AF,DAE=BACtanBAC=3tanDAE=3设AE=a,DE=3a在RtBDE中,BD2=DE2+BE252=(4+a)2+27a2解得a1=1,a2=-(不合题意舍去)AE=1=AF,DE=3=CFBF=AB-AF=3在RtBFC中,BC=6【点睛】本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可17、4【解析】分析:首先由SPAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离然后在直
19、角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值详解:设ABP中AB边上的高是hSPAB=S矩形ABCD,ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离在RtABE中,AB=4,AE=2+2=4,BE=,即PA+PB的最小值为4故答案为4点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质得出动点P所在的位置是解题的关键三、解答题(共7小题,满分69分)18、(1)证明见解析(2) 【解析】试题分析:(1)先根据四边形ABC
20、D是矩形,得出ADBC,PDO=QBO,再根据O为BD的中点得出PODQOB,即可证得OP=OQ;(2)根据已知条件得出A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形试题解析:(1)证明:因为四边形ABCD是矩形,所以ADBC,所以PDO=QBO,又因为O为BD的中点,所以OB=OD,在POD与QOB中,PDO=QBO,OB=OD,POD=QOB,所以PODQOB,所以OP=OQ(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以A=90,在
21、RtABP中,由勾股定理得:,即,解得:t=,即运动时间为秒时,四边形PBQD是菱形考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理19、(1)2x2;(2)x=【解析】(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可【详解】(1),解不等式得:x2,解不等式得:x2,不等式组的解集为2x2;(2)方程两边都乘以(2x1)(x2)得2x(x2)+x(2x1)=2(x2)(2x1),解得:x=,检验:把x=代入(2x1)(x2)0,所以x=是原方程的解,即原方程的解是x=【点睛】本题考查了解一元一次不
22、等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键20、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x1)人,根据题意列出一元一次方程,从而得出答案详解:设从甲班抽调了x人,那么从乙班抽调了(x1)人, 由题意得,45x=239(x1), 解得:x=35, 则x1=351=1 答:从甲班抽调了35人,从乙班抽调了1人 点睛:本题主要考查的是一元一次方程的应用,属于基础题型理解题目的含义,找出等量关系是解题的关键21、(1)A型自行车的单价为210元,B型自行车的单价为240元.(2
23、) 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.【解析】分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题(2)设购买A型自行车a辆,B型自行车的(600-a)辆总费用为w元构建一次函数,利用一次函数的性质即可解决问题详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元,由题意,解得,型自行车的单价为210元,B型自行车的单价为240元.(2)设购买A型自行车a辆,B型自行车的辆.总费用为w元.由题意,随a的增大而减小,当时,w有最小值,最小值,最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为
24、138000元.点睛:本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型22、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),【解析】(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;(3)存在这样的点P,使得QPO=OBC,如备用图所示,延长PQ交x轴于点H,设此时
25、点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标【详解】解:(1)设直线AB解析式为y=kx+b,把A(4,0),B(0,2)代入得:,解得:,直线AB的解析式为y=x2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=;(2)连接BQ,则易得PQOB,且PQ=OB,四边形PQBO是平行四边形,OP=BQ,OP+AQ=BQ+AQAB=2,(等号成立的条件是点Q在线段AB上),直线AB的解析式为y=x2,可设此时点Q的坐标为(t,t2),于是,此时点P的坐标为(t,t),点P在抛物线y=x2上,t=t2,解得:t=0或t=1,当t=0,点P与
26、点O重合,不合题意,应舍去,OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),则tanHPO=,又,易得tanOBC=,当tanHPO=tanOBC时,可使得QPO=OBC,于是,得,解得:m=4,所以P(4,8)或(4,8)【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键23、(1)y=-x2+2x+1;(2)-m2+1m(1)2.【解析】(1)根据待定系数法,可得函数解析式;(2
27、)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值【详解】解:(1)点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,解得,此抛物线所对应的函数表达式y=-x2+2x+1;(2)此抛物线所对应的函数表达式y=-x2+2x+1,C(0,1)设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得,解得
28、,即BC的函数解析式为y=-x+1由P在BC上,F在抛物线上,得P(m,-m+1),F(m,-m2+2m+1)PF=-m2+2m+1-(-m+1)=-m2+1m(1)如图,此抛物线所对应的函数表达式y=-x2+2x+1,D(1,4)线段BC与抛物线的对称轴交于点E,当x=1时,y=-x+1=2,E(1,2),DE=4-2=2由四边形PEDF为平行四边形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2当m=1时,线段PF与DE重合,m=1(不符合题意,舍)当m=2时,四边形PEDF为平行四边形考点:二次函数综合题24、(1)50;(2)16;(3)56(4)见解析【解析】(1)用A等级
29、的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解【详解】(1)1020%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图